KursbeschreibungDer Spektralsatz für Matrizen besagt, dass eine Matrix genau dann unitär diagonalisierbar ist, wenn sie normal ist; insbesondere also wenn sie symmetrisch ist. Dieses Resultat spielt nicht nur in der linearen Algebra eine zentrale Rolle, sondern auch in der Funktionalanalysis, in der Theorie der Partiellen Differenzialgleichungen und in der theoretischen Quantenmechanik. Das Ziel dieses Seminars besteht darin, den Studierenden dieses fundamentale Resultat näher zu bringen. Dazu werden wir zuerst die endlichdimensionale Version dieses Satzes und einige seiner Folgerungen sehen. Bei Interesse könnte eine Version des Spektralsatzes für Operatoren auf unendlichdimensionalen Räumen präsentiert werden.