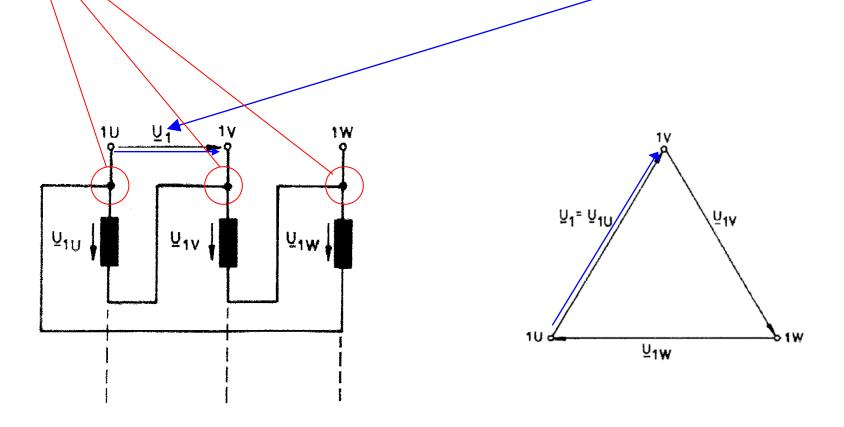


Studientag Energietechnik

2014-02-03

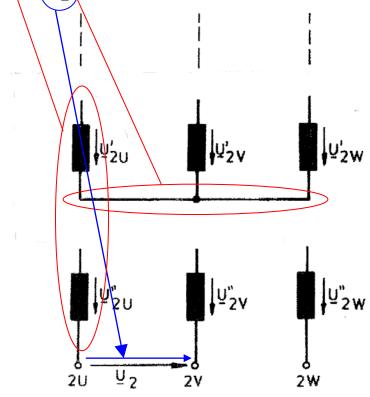
Drehstromtransformator


Einsendeaufgabe zur Kurseinheit 6 und Prüfungsaufgaben (aus F'03 u.A.)

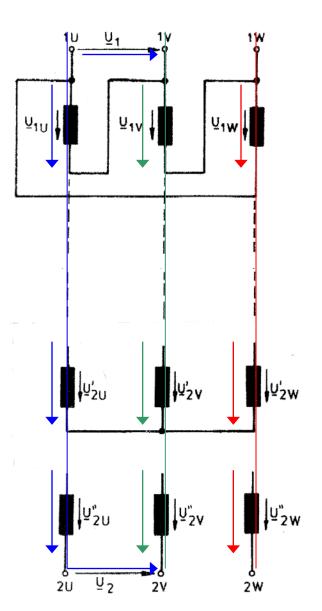
Drehstromtransformator – Einsendeaufgabe

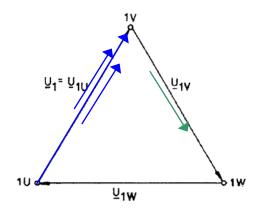
Zeichnen Sie das Schaltbild eines Drehstromtransformators der Schaltgruppe Dz6!

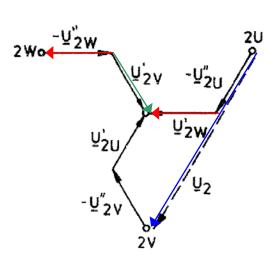
Weisen Sie mit Hilfe eines Zeigerdiagramms nach, dass die Bezugszeiger <u>U</u>1 und <u>U</u>2 entgegengesetzt gerichtet sind!



Drehstromtransformator – Einsendeaufgabe

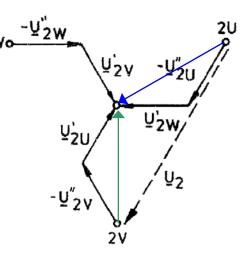

Zeichnen Sie das Schaltbild eines Drehstromtransformators der Schaltgruppe Dz6!


Weisen Sie mit Hilfe eines Zeigerdiagramms nach, dass die Bezugszeiger \underline{U}_1 und \underline{U}_2 entgegengesetzt gerichtet sind!



Drehstromtransformator "Dz6"

An einen Drehstromtransformator der Schaltgruppe Dz6 ist auf der Sekundärseite zwischen den Klemmen 2U und 2V eine einphasige Last angeschlossen. Die Primärseite wird von einem Drehstromnetz (U = 20 kV, f = 50 Hz) versorgt. Die Windungszahlenverhältnisse betragen:


$$\ddot{u} = W_{prim} : W_{sek1} = W_{prim} : W_{sek2} = 150 : 1$$

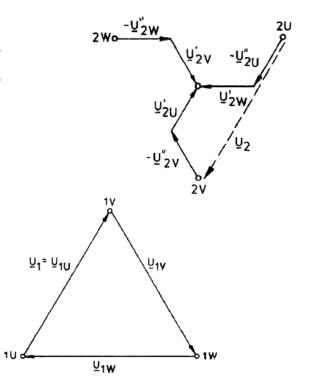
a) Wie groß ist die an der Last anliegende Spannung (Betrag und Phase)? Nehmen Sie $\underline{U}_{1U}=U_{1U}$ als Bezugsspannung an.

$$\underline{U}_{2} = \underline{U}_{2U} + \underline{U}_{2V} = -\underline{U}_{2U} + \underline{U}_{2W} - \left(-\underline{U}_{2V} + \underline{U}_{2U}\right)$$

$$= \underline{U}_{2U} \cdot \left(-2 + e^{-j240^{\circ}} + e^{-j120^{\circ}}\right)$$

$$= \underline{U}_{2U} \cdot \left(-2 - \frac{1}{2} + j\frac{\sqrt{3}}{2} - \frac{1}{2} - j\frac{\sqrt{3}}{2}\right) = -3\underline{U}_{2U}^{"}$$

An einen Drehstromtransformator der Schaltgruppe Dz6 ist auf der Sekundärseite zwischen den Klemmen 2U und 2V eine einphasige Last angeschlossen. Die Primärseite wird von einem Drehstromnetz (U = 20 kV, f = 50 Hz) versorgt. Die Windungszahlenverhältnisse betragen:

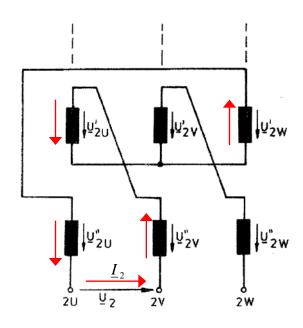

$$\ddot{u} = W_{prim} : W_{sek1} = W_{prim} : W_{sek2} = 150 : 1$$

a) Wie groß ist die an der Last anliegende Spannung (Betrag und Phase)? Nehmen Sie \underline{U}_{1U} = U_{1U} als Bezugsspannung an.

$$\underline{U}_{2} = -3\underline{U}_{2U}^{"} = -3\frac{W_{sek}}{W_{prim}}\underline{U}_{1U}$$

$$= -3\frac{U_{1U}}{150} = -3\frac{20 \text{ kV}}{150}$$

$$= \underline{-400 \text{ V} - 400 \text{ V} \cdot \text{e}^{-\text{j}180^{\circ}}}$$

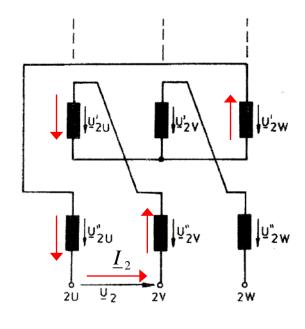

An einen Drehstromtransformator der Schaltgruppe Dz6 ist auf der Sekundärseite zwischen den Klemmen 2U und 2V eine einphasige Last angeschlossen. Die Primärseite wird von einem Drehstromnetz (U = 20 kV, f = 50 Hz) versorgt. Die Windungszahlenverhältnisse betragen:

$$\ddot{u} = W_{prim}$$
: $W_{sek1} = W_{prim}$: $W_{sek2} = 150$: 1

b) Berechnen Sie den Sekundärstrom \underline{I}_2 bei reiner Wirklast R = 2 Ω und geben dabei die in jeder Teilwicklung der Sekundärseite übertragenen komplexen Scheinleistungen an.

$$\underline{U}_2 = -400 \,\mathrm{V}$$
 $\underline{I}_2 = \frac{-400 \,\mathrm{V}}{2 \,\Omega} = \underline{-200 \,\mathrm{A}}$

$$\underline{\underline{S}}_{2U} = \underline{\underline{U}}_{2U} \cdot \underline{\underline{I}}_{2}^{*} = \frac{20 \text{ kV}}{150} \cdot (-200 \text{ A}) = \underline{\underline{-26,7 \text{ kVA}}}$$



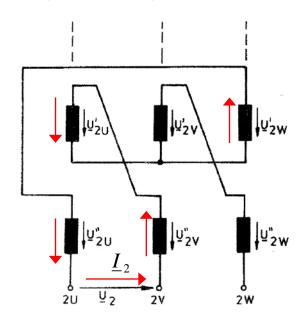
b) Berechnen Sie den Sekundärstrom \underline{I}_2 bei reiner Wirklast R = 2 Ω und geben dabei die in jeder Teilwicklung der Sekundärseite übertragenen komplexen Scheinleistungen an.

$$\underline{U}_2 = -400 \,\mathrm{V}$$
 $\underline{I}_2 = \underline{-200 \,\mathrm{A}}$

$$\underline{S}_{2U}^{"} = \underline{U}_{2U}^{"} \cdot \underline{I}_{2}^{*} = \underline{S}_{2U}^{"} = \underline{-26,7 \text{ kVA}}$$

$$\underline{S}_{2V}^{"} = \underline{U}_{2V}^{"} \cdot \left(-\underline{I}_{2}^{*}\right) = \underline{U}_{2U}^{"} \cdot e^{-j120^{\circ}} \cdot \left(-\underline{I}_{2}^{*}\right) = -\underline{S}_{2U}^{"} \cdot e^{-j120^{\circ}}$$

$$\underline{S}_{2W} = \underline{U}_{2W} \cdot \left(-\underline{I}_{2}^{*}\right) = \underline{U}_{2U} \cdot e^{-j240^{\circ}} \cdot \left(-\underline{I}_{2}^{*}\right) = -\underline{S}_{2U} \cdot e^{-j240^{\circ}}$$


b) Berechnen Sie den Sekundärstrom \underline{I}_2 bei reiner Wirklast R = 2 Ω und geben dabei die in jeder Teilwicklung der Sekundärseite übertragenen komplexen Scheinleistungen an.

$$\underline{U}_2 = -400 \,\mathrm{V}$$
 $\underline{I}_2 = \underline{-200 \,\mathrm{A}}$

$$\underline{S}_{2U}^{"} = \underline{U}_{2U}^{"} \cdot \underline{I}_{2}^{*} = \underline{S}_{2U}^{"} = \underline{-26,7 \text{ kVA}}$$

$$\underline{S}_{2V}^{"} = (-13,3 - j23,1) \text{ kVA}$$

$$\underline{S}_{2W} = (-13,3 + j23,1) \text{ kVA}$$

$$\underline{\underline{S}_{2V}} = 0$$

$$\underline{\underline{S}_{2W}} = 0$$

c) Erläutern Sie, welche Beiträge die Teilleistungen aus Aufgabenteil b) (Realund Imaginärteile) für diesen Betriebszustand liefern.

$$\underline{S}_{2U} = \underline{S}_{2U} = -26,7 \text{ kVA}$$

Beide U-Teilwicklungen liefern jeweils ein Drittel der in der Last umgesetzten Wirkleistung.

$$\underline{S}_{2V}^{"} = (-13,3-j23,1) \text{ kVA}$$

Die V"-Teilwicklung liefert ein Sechstel der in der Last umgesetzten Wirkleistung. Zusätzlich gibt sie Blindleistung ab.

$$\underline{S}_{2W} = (-13,3 + j23,1) \text{ kVA}$$

Die W'-Teilwicklung liefert ein Sechstel der in der Last umgesetzten Wirkleistung. Zusätzlich nimmt sie die von der V"-Teilwicklung abgegebene Blindleistung auf.

$$\underline{S}_{2V}^{'} = \underline{S}_{2W}^{''} = 0$$

Diese Teilwicklungen liefern keinen Beitrag.

- d) Nennen Sie Vor- und Nachteile dieser Verschaltung!
 - + Bei unsymmetrischer Belastung wird anders als beispielsweise bei Dy- oder Dd-Schaltung auch der dritte Strang am Leistungsbezug beteiligt.
 - + Für diese Lastverteilung ist kein aktiver Schaltaufwand nötig.
 - Die Herstellung der z-Wicklung ist komplizierter und teurer.
 - Die Lastverteilung im Sinne einer Symmetrierung ist nur begrenzt möglich.

- e) Das betrachtete oberspannungsseitige Netz sei als Dreileiternetz ausgeführt. Welche Auswirkungen hat hier eine einpolige Erdberührung (Erdschluss)?
 - + Weil kein geerdeter Sternpunkt vorhanden ist, tritt kein Kurzschluss auf ein Weiterbetrieb des Netzes ist möglich.
 - Bei Mittelspannung sind (kapazitive) Erdschlussströme zu erwarten, die evtl. kompensiert werden müssen.
 - Die Spannungsbeanspruchung der nicht betroffenen Leiter gegen Erde wird um den Faktor √3 erhöht, was jedoch oft tolerierbar ist.
 - Wenn längere Kabelstrecken vorhanden sind, sind sowohl die beteiligten (Leiter-Erd-) Kapazitäten größer als auch die höhere Spannungsbeanspruchung kritischer.