Date: August 2005

Unified Modeling Language: Superstructure

version 2.0
formal/05-07-04

'Eﬁ _——

OBJECT MANAGEMENT GROUP

Copyright © 2001-2003 Adaptive Ltd.

Copyright © 2001-2003 Alcatel

Copyright © 2001-2003 Borland Software Corporation
Copyright © 2001-2003 Computer Associates International, Inc.
Copyright © 2001-2003 Telefonaktiebolaget LM Ericsson
Copyright © 2001-2003 Fujitsu

Copyright © 2001-2003 Hewlett-Packard Company

Copyright © 2001-2003 I-Logix Inc.

Copyright © 2001-2003 International Business Machines Corporation
Copyright © 2001-2003 IONA Technologies

Copyright © 2001-2003 Kabira Technologies, Inc.

Copyright © 2001-2003 MEGA International

Copyright © 2001-2003 Motorola, Inc.

Copyright © 1997-2005 Object Management Group.

Copyright © 2001-2003 Oracle Corporation

Copyright © 2001-2003 SOFTEAM

Copyright © 2001-2003 Telelogic AB

Copyright © 2001-2003 Unisys

Copyright © 2001-2003 X-Change Technologies Group, LLC

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS
The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of

an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its

attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmMed™, CORBAnNet™, Integrate 2002™, Middleware That's Everywhere™, UML™ Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE
The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use

certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software

developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

i S Yo o] 01 =PSRRI 1
AN 70 1) (0] 6 1 4= 1o (o1 =NV r VTR T T TR OO 1
20 R = 1 o TN = Vo [T U T 1) USSP 1

2.2 COMPlIANCE LEVEIS ... 1

2.3 Meaning and Types of COMPUIANCEccooveeiiiieiiiiieeeer e 4

2.4 Compliance Level CONENTSuuuuiiiiiiiiie e e eeeee et e e e e e e e e e eeeeanaaanaas 6

3 NOIMALIVE TR I ENCES .. 7
4 Terms and DefiNitiONS ..o 8
D SYMOIS 8
6 AdAItioNAl INTOIMALION .ouiieieii e e e e eanas 8
6.1 Changes to Adopted OMG Specificationscoovviiiiiiiiiiiii e, 8

6.2 Architectural Alignment and MDA SUPPOIToooiiiiiiiiiiiiieee e 8

6.3 On the RUN-Time SemantiCS Of UMLoiriiei e 8

6.3.1 THE BASIC PrEIMISES ..oeuiiiiiiiieiie ettt e s e e e e e e e e et e e e s e e e e e e s e eaba e e e s eebananss 9

6.3.2 The SEmMAaNtICS ATCNITECIUIEuuiiiiiiiiiii e e e s e e e e e s rea e eees 9

6.3.3 The Basic Causality MOAElcoooiiiiiiier e 10

6.3.4 Semantics Descriptions in the Specificationcccccceiiiiiiiiiiee, 10

6.4 The UML MetamOAEIconieiie e et 11

6.4.1 Models and What They MOdelouuiiiiiiiiieiii e 11

6.4.2 Semantic Levels and Namingccccuveeeiiiieeoiiiis e n e e e 11

6.5 How to Read this SPecCIfiCationcccociiiiiiiiiiiiii e 12

6.5.1 SpecCification FOMALcoooiiiiiii e 13

6.5.2 Diagram FOIMMALcooiuiiiiiiiiiiie et e e et b e e e s sbar e e e e aa 15

6.6 ACKNOWIEAQEMENLSccoiiii e e e e e e e e e e e e 16

Part | - StTUCTUIE ..o 19
T G A S S e 21
N R O V= /1<) VTSR 21

UML Superstructure Specification, v2.0 i

7.2 ADSIIACE SYNTAX oottt e e e e e e e e e e e e e e s e 22

ARSI O = 113 1= TS od] 1 o] o U 35
7.3.1 Abstraction (from DependencCies)uuueeeiiiiiiiiiaiii i 35
7.3.2 AggregationKind (from KerNel) ...t 35
7.3.3 Association (from Kernel) ... 36
7.3.4 AssociationClass (from AssocCiationClasSes)occocuviiiieiiiiiieieee e 42
7.3.5 BehavioralFeature (from Kernel) ... 44
7.3.6 BehavioredClassifier (from INterfaces) ... 45
7.3.7 Class (from Kernel) ...t 45
7.3.8 Classifier (from Kernel, Dependencies, POWEITYPES)ccccvveeeeriiiiiaeeiiiiiiiiiiinnee 48
7.3.9 Comment (from KEINEI)coeiiiiiiiii e 53
7.3.10 Constraint (from Kernel) ... 54
7.3.11 DataType (from KEINEI)oeeiiiiii it 56
7.3.12 Dependency (from DependenCies)cceiuiiaeaiiiiiiiiiiiiie et 58
7.3.13 DirectedRelationship (from Kernel) ... 59
7.3.14 Element (from KEINEI)eeiiiiiiiii e 60
7.3.15 Elementimport (from Kernel)ooooiiiiiiiie e 61
7.3.16 Enumeration (from Kernel) ..ot 63
7.3.17 EnumerationLiteral (from Kernel) ... 64
7.3.18 Expression (from Kernel) ... 65
7.3.19 Feature (from Kernel) ... 66
7.3.20 Generalization (from Kernel, POWEITYPES)uuuuiiiiiiiaaaiiiiiiiiiiieeceee e 67
7.3.21 GeneralizationSet (from POWEITYPES) ...ouuuviiiiiiiiiiieaee ettt 71
7.3.22 InstanceSpecification (from Kernel) ... 78
7.3.23 InstanceValue (from Kernel) ... 81
7.3.24 Interface (from INtErfaCeS)ooooiiiiiiiiie e 82
7.3.25 InterfaceRealization (from INtErfaces) ..o 85
7.3.26 LiteralBoolean (from Kernel) ... 85
7.3.27 Literallnteger (from Kernel) ... 86
7.3.28 LiteralNull (from KEINEI)oooiiiiiiiiie e 87
7.3.29 LiteralSpecification (from Kernel) ... 88
7.3.30 LiteralString (from Kernel) ... 88
7.3.31 LiteralUnlimitedNatural (from Kernel) ... 89
7.3.32 MultiplicityElement (from Kernel) ... 90
7.3.33 NamedElement (from Kernel, Dependencies)coouuiuiiiiiiiieiiieeeee e 93
7.3.34 Namespace (from Kernel) ... 95
7.3.35 OpaqueExpression (from Kernel).......... ... 97
7.3.36 Operation (from Kernel, INterfaces)....... .. 99
7.3.37 Package (from KerNel)oooooiiiiiiiiii e 103
7.3.38 PackageableElement (from Kernel) ... 105
7.3.39 Packagelmport (from Kernel) ... 106
7.3.40 PackageMerge (from Kernel) ... 107
7.3.41 Parameter (from Kernel, ASsociationCIassSes)cccuvveeieiiiiieeeiinniiiiiiiieieeeen, 115
7.3.42 ParameterDirectionKind (from Kernel) ... 117
7.3.43 PrimitiveType (from Kernel) ... 117
7.3.44 Property (from Kernel, ASsociationClasSes)ooocccuuiiiiiiiiiiiieeeeeeeeeiiiies 118
7.3.45 Realization (from DependencCies)oooiuuiiiiiiiiieiieaiee e 124
7.3.46 RedefinableElement (from Kernel) ... 125
7.3.47 Relationship (from Kernel) ... 126
7.3.48 SIot (from KErNEl) ... 127

UML Superstructure Specification, v2.0

7.3.49 StructuralFeature (from Kernel)ooovvieiiiiiiiii e 128

7.3.50 Substitution (from DependencCi€s)cccoviviiiiiieiiiiiiei e 129

7.3.51 Type (from KerNEI)uueeiiiiiii e s 130

7.3.52 TypedElement (from Kernel) ..o 131

7.3.53 Usage (from DependencCi€s)cccoeeieiiiiiiiiiieieiiieeses s e e e e e e e e e e eee e 131

7.3.54 ValueSpecification (from Kernel)..........oooveeiiiiiiiiiiiiii e 132

7.3.55 VisibilityKind (from Kernel) ..o 133

A D= To | = 0 £ 1 TP PPPPPPPPPPPPRRN 134
8 COMPONENTS ot 139
8.1 OVEIVIEW ...eeieiieiitie ittt e e e e e e ettt et b e e e e eeeeaeaeeeeeeeennnes 139
8.2 ADSIIACT SYNTAX ...eeiiiiiiiiiiiiieie it e e e e e e e e e e e e e 140
8.3 Class DESCHPLIONSccoeeeeeiiieeeeeeeitees e e e et e s e e s e e e e e e e e e eeeeeeennnnes 142
8.3.1 Component (from BasicComponents, PackagingComponents)ccccceuuvees 142

8.3.2 Connector (from BasicCCOMPONENLS)cccovvviiiiiiiiiiiiiiiiee i e e e e eee e 150

8.3.3 ConnectorKind (from BasicCCOMPONENtS)uuvvueiiiiiiiiieieeeeeeeeeceeeeeeeeeven 153

8.3.4 Realization (from BasiCCOMPONENLS)cccvvviiiiiiiiiiiiiiiiiieie e e e e e e e e ee e e 153

8.4 DIAGIAIMS ...ttt e et oo e e et et e e e et ettt e e e e e e e e e e e e e e e e e aaae 154
O COMPOSITE SIIUCTUIES ..oiiiiiiii e et e e e e et eeeeeeenes 157
.1 OVEIVIEW ...ttt et e e e e e e e e e e et e e e e e e e e e e e e e e ee e e s seas s e s e eeeeaeaaeeeeeeennnnes 157
9.2 ADSIIACT SYNTAX ...eiiiiiiiiiiiiiiiie it r e e e e e e e e e e e e e e s e nnaes 157
9.3 Class DESCHPLIONSccceeeiiiiiieeeeiiiie s s e e e e e e e et s e e e e e e e e e eeaeeeeeeennnnes 162
9.3.1 Class (from StructuredClassSes)cevveereiiiiiiiiiiiiieiei e 162

9.3.2 Classifier (from Collaborations)ovuiiiiiiiiiiii e 163

9.3.3 Collaboration (from Collaborations)cccccceiiiiiiiiiiiiee e 164

9.3.4 CollaborationUse (from Collaborations)ccccoeeviiiiiiiiiiiiiiiiieeen, 166

9.3.5 ConnectableElement (from INternalStruCtures)cccceeeeeveeieieeeeeeeeeceeeeeeveveen 170

9.3.6 Connector (from INternalStruCtures)ooovviviveieiiiiiieirr e 170

9.3.7 ConnectorEnd (from InternalStructures, POrS)ccccceeviiiiiiieiiieieiiieeeeeeiien 172

9.3.8 EncapsulatedClassifier (from POrItS)uuuuiiiiiiiiiieiiee e 173

9.3.9 InvocationAction (from ACLIONS)ceeveieiiiiiiires e 174

9.3.10 Parameter (from Collaborations)euveuiiiiiiiiiiiiiiee e 175

LS 0 700 I R o T (o TN 0 €= 175

9.3.12 Property (from INternalStruCtures)eecceiiiiieiiie e 179

9.3.13 StructuredClassifier (from InternalStructures)ccccceeeeeiiiiieeeeeeeei, 182

9.3.14 Trigger (from INVOCAtIONACLIONS)cevvviiriiiiiiiiieiiie i 186

9.3.15 Variable (from StructuredACHVITIES)uuuvuureiiiiiiiie e 186

S D 1=V | = o 1 PP PPPPPPPPPPPRN 187
10 DEPIOYMENTS i e 189
L1O.1 OVEIVIEW ..uiiiiiiiiiii et e e e e e e e e e e et et e e e e e e as e e e e e e eata e eeaeens 189
10.2 ABSIFACT SYNTAX ..eeiiiiiiiiiiiieeiiii ettt e e e e e e e e e e e e e e e e e e e 189

UML Superstructure Specification, v2.0 i

10.3 ClasSS DESCHPLONSuvvriiiiiiiiiiiiiiieeee et e e e e e e e e e e e e e e e e e s e ananes 192

10.3.1 Artifact (from Artifacts, NOGES)ccccuvvriiiiiiiiiieee e 192
10.3.2 CommunicationPath (from NOGES)uuvviiiiieeiiiiiiiiiire e 195
10.3.3 DeployedArtifact (from NOGES)ccoccviiiiiiiiiiiee e 195
10.3.4 Deployment (from ComponentDeployments, NOAES)cccvveeevevivviiienniiniennnenn. 196
10.3.5 DeploymentSpecification (from ComponentDeployments)ccccccvvvvveeeennnn. 198
10.3.6 DeploymentTarget (from NOGES)uuerriiiiiiiiieeeiee i e sevrree e e 200
10.3.7 DeVice (from NOGES)uvvieiiiiiieieeiiie s i e e e e e e s eer e e e e e e e e e s e e sne e aeeeees 201
10.3.8 ExecutionEnvironment (from NOAES)coeeveeiiiiiiiiiiiiieeeee e 202
10.3.9 InstanceSpecification (from NOES)uuveiviieiieeeiiiiiiiieeree e 204
10.3.10 Manifestation (from ArtifactS)cccccvimiiiiiie e 204
10.3.11 Node (from NOGES)uuueeriiiiiiiieeee e e i ee e e e e e e e s s s s e e e e e e e e s s e annrenaeeeeeees 205
10.3.12 Property (from NOGES) ...ocivvieeeeiie it e e s r e e e e e e aaeeee e e 207
(ORI - To | =10 1 TP PP PP PPPPPPPPPPPRRN 208

Part [l - BN AVIOE et aaes 211

11 Actions

.. 213
3 T 1Y 7= V1= PPN 213
11.2 ADSIFACT SYNTAX ..uuiiiiiiiiiieeie ettt e e e e e e e e et et a e s s e e e e e e e e e aeeeeeeeenees 215
11.3 ClasSS DESCHPLONSuvieieeiiiiiiiiiieiee et e e e e e e e e e e e e e e e e e s annes 227

11.3.1 AcceptCallAction (from CompleteACtionS)cocovveciviiiiiiiiie e 227
11.3.2 AcceptEventAction (from CompleteACtioNS)ccccvvvvviriiiiieieeeee e 228
11.3.3 Action (from BaSICACHIONS) ...ccceeeiiiiiiiiiieieeie e e e e e e e s s s e e e e e e e e e e s e e e snnnnnneenees 230
11.3.4 ActionInputPin (from StructuredACtIONS)covvviiiiiriiiiiieeer e 231
11.3.5 AddStructuralFeatureValueAction (from IntermediateActions)cccccvvvveeee. 233
11.3.6 AddVariableValueAction (from StructuredActions)cccccecvveeeeiiiiiiiccivinnnnn, 234
11.3.7 BroadcastSignalAction (from Intermediate Actions)cccceeevvvivveveiiiiiiiiiennn, 235
11.3.8 CallAction (from BaSiCACLONS)ccoviiiiieeeeiicss e e 237
11.3.9 CallBehaviorAction (from BaSiCACLONS)ccevvvvvriiiiiiiiiieiieeeeeeeeeeee e 237
11.3.10 CallOperationAction (from BaSiCACLIONS)ccuvvvviiiiiiiiiiiiiieeeeeee e 239
11.3.11 ClearAssociationAction (from Intermediate Actions)ccccevvvvvvvvvveiivnnnennnn. 240
11.3.12 ClearStructuralFeatureAction (from IntermediateActions)cccccevvvvvvvnnnnnn. 241
11.3.13 ClearVariableAction (from StructuredAcCtionS)cccccovvvevieeeiiiriveeeeeien, 242
11.3.14 CreateLinkAction (from Intermediate ACtions)cccceeeeviiiierevvieiii, 243
11.3.15 CreateLinkObjectAction (from CompleteActions)ccceeevvvivivvieeiiiiiin, 244
11.3.16 CreateObjectAction (from Intermediate ACtions)ccceeeeeveievivveeeeie, 245
11.3.17 DestroyLinkAction (from Intermediate ACtionS)cceeeevvviviiievieic, 246
11.3.18 DestroyObjectAction (from Intermediate ACtions)ccceevevvvieeieviiiiiiiiceen, 248
11.3.19 InputPin (from BaSiCACLIONS)ccceeeiiiiiieceeeeeree s e e e e e e e 249
11.3.20 InvocationAction (from BaSiCACLIONS)ccevviriiiiiiiiiiiieieeeeee e e e 249
11.3.21 LinkAction (from Intermediate ACtioNS)ccceeeeiiiiiiiiiiie e, 250
11.3.22 LinkEndCreationData (from IntermediateActions, CompleteActions) 251
11.3.23 LinkEndData (from IntermediateActions, CompleteActions)cccccccvvvvvnnnnnn. 253
11.3.24 LinkEndDestructionData (from Intermediate Actions)ccccevvvevvvviivinnnnnnn. 254
11.3.25 MultiplicityElement (from BasSiCACLIONS)cvvvviviiiiiiiiiiie e 255

UML Superstructure Specification, v2.0

11.3.26 OpaqueAction (from BaSiCACLONS)ccoeiiiiiieieiiieieceeeeeieeess e e e e e e e e e eeeeanns 255

11.3.27 OutputPin (from BaSICACHONS)uuvuueiiiiii i e e e e e aa e e e 256
11.3.28 Pin (from BaSICACHONS)uuuiiiiiieiee ettt s s s e s e e e e e e e ee e e e e eeeeeeeaannnes 256
11.3.29 QualifierValue (from CompleteACtiONS)cevvvviiviiiiiiiiiiii i e e 257
11.3.30 RaiseExceptionAction (from StructuredACtioNS)eevceviiiiiiiiiieeeeeieeeeeeeeeans 258
11.3.31 ReadExtentAction (from CompleteACtions)ooevvvviiviiiiiiiiiiie e, 259
11.3.32 ReadlsClassifiedObjectAction (from CompleteActions)cccccceeeeeeiviiiiiiennnns 260
11.3.33 ReadLinkAction (from Intermediate ACtioNS)evvuiiiiiiiiiiiieee e, 261
11.3.34 ReadLinkObjectEndAction (from CompleteActions)cccccceeevvviviieieiiiniinnnnns 263
11.3.35 ReadLinkObjectEndQualifierAction (from CompleteActions)cccceeeeees 264
11.3.36 ReadSelfAction (from Intermediate ACtionS)vvveiiiiiiiiiiiiiee e, 265
11.3.37 ReadStructuralFeatureAction (from Intermediate Actions)ccccceevvvvvennns 266
11.3.38 ReadVariableAction (from StructuredAcCtionS)cuvvvevveiiiiiiiiiieieeeeeeeeeeeeeanns 267
11.3.39 ReclassifyObjectAction (from CompleteActions)uvvveceiiiiiiiieeeeeeeieeeeeans 268
11.3.40 RemoveStructuralFeatureValueAction (from IntermediateActions) 269
11.3.41 RemoveVariableValueAction (from StructuredActions)cccccceeeeviviiviennnns 270
11.3.42 ReplyAction (from CompleteACtIONS)oovvvviiiiiiiiiiiiiieie e 271
11.3.43 SendObjectAction (from Intermediate ACtionS)ccccceieiiiiiiiiiee e, 272
11.3.44 SendSignalAction (from BaSiCACHONS)euvvviviiiiiiiiiiieie e eeeeeeeeee e 273
11.3.45 StartClassifierBehaviorAction (from CompleteActions)ccccceeeveiviviviennnns 275
11.3.46 StructuralFeatureAction (from Intermediate ACtions)cccccveeveeeiiiiiiiiiiiennns 275
11.3.47 TestldentityAction (from Intermediate ACtions)ooovvvvviiiiiiiiiiiiiie e, 277
11.3.48 UnmarshallAction (from CompleteACtioNS)covvvviivviriiiiiiiiiii e eeeeeeeeeeeeeeeanns 278
11.3.49 ValuePin (from BaSIiCACLONS)cccoeiiiiiiieieeeeeiiiiie s e e e e e e e e e e e e e e e eeeeeeeaannnns 279
11.3.50 ValueSpecificationAction (from Intermediate ACtions)ccccceeeviiiiiieieiiinnnnnn, 280
11.3.51 VariableAction (from StructuredACtionS)oovvviiiiiiiiiiiiiiiiie e e, 281
11.3.52 WriteLinkAction (from Intermediate ACtions)ooovvvviviiiiiiiiiiin e, 281
11.3.53 WriteStructuralFeatureAction (from Intermediate ACtions)ccccceveeeveieeeeeenn. 282
11.3.54 WriteVariableAction (from StructuredActions)cuveveiiiiiiiiiiieeeeeeeeeeeeeeeans 283
N B I - To | =10 1 S PP PPPPPPPPP 284
D2 AN o3 LNV = 285
L12.1 OVEIVIEW ..ot e et e e e e e e e e e e e e e e e e e et e s e et e e e e eaaaaaaees 285
12.2 ABSIIACT SYNTAX .eviiiiiiiiieieeeiie ettt e e e e e e e e 287
12.3 Class DESCIPLONSuuiiiiieeeeiieeei et e e e e e e e e e e e e e eee et a e e e e e eaeaaaaees 299
12.3.1 AcceptEventAction (as specialized)ouvvviviiiiiiiiiiiiii e 299
12.3.2 Action (from CompleteActivities, FundamentalActivities, StructuredActivities) . 301
12.3.3 ActionlnputPin (as specialiZed)cccooiiiiiieiiiiiiieee e 305
12.3.4 Activity (from BasicActivities, CompleteActivities, FundamentalActivities,
SHUCIUIEAACHIVITIES) .oiiviieeeeeeeiet s e e e e e 306
12.3.5 ActivityEdge (from BasicActivities, CompleteActivities,
CompleteStructuredActivities, Intermediate ACtiVIties)evvvvvvieiiiiiiiiiieneennn. 315
12.3.6 ActivityFinalNode (from BasicActivities, IntermediateActivities) 320
12.3.7 ActivityGroup (from BasicActivities, FundamentalActivities)ccccceeevvevenes 322
12.3.8 ActivityNode (from BasicActivities, CompleteActivities, FundamentalActivities,
IntermediateActivities, StructuredACtiVItIES)cooeeeeiiiiiiiiee 323
12.3.9 ActivityParameterNode (from BasSiCACHVItIES)uvvvuiiiiiiiiiiiieieee e, 326
12.3.10 ActivityPartition (from Intermediate ACtiVItieS)ccveeiiiiieiiiiie e, 329

UML Superstructure Specification, v2.0 \Y

12.3.11 AddVariableValueAction (as specialized)ccccceeeviiiiiiiiiiiiiiiiiieeeeinn 335

12.3.12 Behavior (from CompleteACtVItIES)uvvvvruuiiiiiiiii e 336
12.3.13 BehavioralFeature (from CompleteACtiVItieS)ccceeeiiveieeeieieiiieeeee, 336
12.3.14 CallBehaviorAction (as specialized)cccvviiiiiiiiiiiiiiie e 337
12.3.15 CallOperationAction (as specialized)cccccceeiiiiiiiiiiiii e 339
12.3.16 CentralBufferNode (from Intermediate ACtiVities)ccccvvvvvviivviiiiiiiiicieeeen, 340
12.3.17 Clause (from CompleteStructuredActivities, StructuredActivities) 342
12.3.18 ConditionalNode (from CompleteStructuredActivities, StructuredActivities) ... 342
12.3.19 ControlFlow (from BaSICACHVITIES)eevvviviiiiiiiiiiieie e ee e 344
12.3.20 ControlNode (from BaSiCACHVILIES)ocvvvvviiiiiiiiiiiiiie e e e 346
12.3.21 DataStoreNode (from Complete ACtiVItieS)ccccoveveieieiiiiiiiiieeee, 347
12.3.22 DecisionNode (from Intermediate ACtiVItiesS)cccoeveieeiieiiiiiiieiee 349
12.3.23 ExceptionHandler (from ExtraStructuredActivities)ccccvvvvrvviviiiiiiicinennn. 351
12.3.24 ExecutableNode (from ExtraStructuredActivities, StructuredActivities) 354
12.3.25 ExpansionKind (from ExtraStructuredActivitieS)cccccevveveieiiiiiiveeeiiiiiiiinnnn, 354
12.3.26 ExpansionNode (from ExtraStructuredActivities)ccccceeeeeeiiviiveeiiiiiiiinnn, 354
12.3.27 ExpansionRegion (from ExtraStructuredActivities)cccceevvrivvieiiiiiiiiceenn, 355
12.3.28 FinalNode (from Intermediate ACtiVItIES)ccceeeiiieiiiiieiiiee e, 360
12.3.29 FlowFinalNode (from Intermediate ACtiVIitieS)cccceevvieivieiieieiiiiieeeeeiee 362
12.3.30 ForkNode (from Intermediate ACtIVItIES)uuveriiiiiiiiieee e 363
12.3.31 InitiaINode (from BaSICACHVILIES)covvvviieeiiiecirec e 365
12.3.32 InputPin (as SPECIAlIZEA)coeiiiiiei e ————— 366
12.3.33 InterruptibleActivityRegion (from CompleteActivities)ccccccevvvviveveiviiinnnnnn. 366
12.3.34 JoinNode (from CompleteActivities, IntermediateActivities)ccccccveennnn. 368
12.3.35 LoopNode (from CompleteStructuredActivities, StructuredActivities) 371
12.3.36 MergeNode (from Intermediate ACtiVItIES)uvuvueiiiiiiiiiii e 373
12.3.37 ObjectFlow (from BasicActivities, CompleteActivities)cceevvvvvvveriivnnnnnnn. 375
12.3.38 ObjectNode (from BasicActivities, CompleteActivities)ccccvvvvvervevnvnnnnnnn. 380
12.3.39 ObjectNodeOrderingKind (from CompleteActivities)ccccevvvvvvevvveievncnennnn. 383
12.3.40 OULPULIPIN Loiiiiiiiiiiie sttt et e e e st e e e st e e e s snbbae e e e e enneeas 383
12.3.41 Parameter (from CompleteACHIVItIES)uvvvrureiiiiiie e 383
12.3.42 ParameterEffectKind (from CompleteAcCtivities)ccccevvvviriieeeriiiieeeiein, 385
12.3.43 ParameterSet (from CompleteACtiVItIES)uvvuruiiiiiiiiiii e 386
12.3.44 Pin (from BasicActivities, COmMplete ACtiVIIES)cveeviveieeieeieiieeeeeei, 387
12.3.45 SendObjectAction (as specialized)ooooviiiiiiiiiiiii e 393
12.3.46 SendSignalAction (as specialized)ooevvuuiiiiiiiiii e 394
12.3.47 SequenceNode (from StructuredACtIVItIES)uvvveiiiiiiiieeeeieiereeeeen 395
12.3.48 StructuredActivityNode (from CompleteStructuredActivities,

SHUCIUIEAACTIVITIES) .vvvvirieiiiiie it e e e e e e e e e e e e e e e eeaeeaeenees 396
12.3.49 UnmarshallAction (as specialized)oovvuiiiiiiiiiiiiiiiei e 398
12.3.50 ValuePin (as specialized)ccooiiiiiieiieiicic e 399
12.3.51 ValueSpecificationAction (as specialized)ccccceveeiiiiiiiiieeeceeeee, 399
12.3.52 Variable (from StructuredACHVItIES)covvvveiiiiiiiiceie e 401

R B I - To | =10 1 SO PP PPPPPPPUPPPPPRRN 402
13 CoMMON BENAVIOIS ouiiiiiiiiiiiii et e et 407
13,1 OVEIVIEW ..ottt e e e e e et e e e e e e et e e e e e e aat e e e eeestaneeeaaeees 407
13.2 ADSIIACT SYNTAX ...ttt ee e e et e e e e e e e e e e e e e e s s anaes 411

Vi UML Superstructure Specification, v2.0

13.3 Class DESCHPLONS ...ccooiiiiiiiieiiiiieieee ittt e e e e e e e e 415

13.3.1 AnyReceiveEvent (from CommuniCations)cccccvverrrerreeeeeeiiiiiinrneeeeeeeeeeens 415
13.3.2 Behavior (from BasSiCBENAVIOIS)cvvviieeeiiiiiiiiiiiieie e e e een e e e e e 416
13.3.3 BehavioralFeature (from BasicBehaviors, Communications).........cccccceeevevviennnns 418
13.3.4 BehavioredClassifier (from BasicBehaviors, Communications) 419
13.3.5 CallConcurrencyKind (from CommuniCations)ccceveveveeeereiiiiiiiriieneeeeeeeen 421
13.3.6 CallEvent (from COMMUNICALIONS)cceeviiiiiiiiiiiiieieer e e e e e e e e s s e e e e e e e 421
13.3.7 ChangeEvent (from COMMUNICALIONS)ccvvveeeiiiiiiieiiieireie e e e ee e e e 422
13.3.8 Class (from COMMUNICALIONS)uuvvuiiriiiiiieeeees i e e e e e e e s s srerrrrrrereeeeees 423
13.3.9 Duration (from SIMPIETIME)cccciiiiiiiieiiee e e e e e e 424
13.3.10 DurationConstraint (from SimpleTime)ccooviiiiiiiiiiieieee e 425
13.3.11 DurationiInterval (from SImpIeTIME)ccooviiiii e 426
13.3.12 DurationObservationAction (from SImpIETIME)ccevvvveeeeeiiiiiiiieeee e, 427
13.3.13 Event (from COMMUNICALIONS) ..ovvveeeieeiei it e e e e e e e e e e e e e e 428
13.3.14 FunctionBehavior (from BasicBehaviors)ccccccvveiieieeiiiis e, 428
13.3.15 Interface (from ComMmMUNICAtIONS)cooveviviiiiiiiee e e e e e e 429
13.3.16 Interval (from SIMPIETIME) ...occcceiieieeee e e e 430
13.3.17 IntervalConstraint (from SIMPIETIME)cceveeeiiiiiiieeee e 430
13.3.18 MessageEvent (from CommuNICatiONS)cc.uvvvviiiirireeeeeeeiiiiirieeee e e e e ee e e 431
13.3.19 OpaqueBehavior (from BasiCBENAVIOIS).........ccivvveeeiiiiiiiiiiiieiieiee e e e e 432
13.3.20 OpaqueExpression (from BasiCBENAVIOrS)cccccvvieeeveeiee i 432
13.3.21 Operation (from COMMUNICAIONS)vvvieiririeeeeeiiiiriiiiiieeer e e e e e e e s e s eeeeeeeees 433
13.3.22 Reception (from COMMUNICAtIONS) ..uvevvieeeeeieiiiiiiiiiiieeee e ee e e e e e eserrreer e e e e e e 434
13.3.23 Signal (from ComMmMUNICALIONS)cceeeeeiesiiiiiiiieeire e e e e s e e e e e e 435
13.3.24 SignalEvent (from COmMMUNICAtIONS)cccovviiiiiiiiiiiieecee e e 435
13.3.25 TimeConstraint (from SIMPIETIME)uevvvieeeeiiiei e 437
13.3.26 TimeEvent (from Communications, SimpleTime)ccccccviviiverieeee s 438
13.3.27 TimeExpression (from SIMPIETIME)cccvvviiiieeeee e 439
13.3.28 Timelnterval (from SIMPIETIME)eueviviieee i 439
13.3.29 TimeObservationAction (from SIMPIETIME)eevevivieeeeeiiiiiiirer e 440
13.3.30 Trigger (from COMMUNICALIONS)vuvvririiiieeeeeiiiiicirieeer e e e e e e e e e s s s serrrrrrereeeee s 441
I e =T = Vo 1 o o 443
I I @ AV 1 SRR 443
I AN o 1S) = T 051 1= SRR 444
14.3 Class DESCIPLONSuuiiiiieieeiieeiiieeeiiiiittr e e e e e e e e e e e e e et bbb e e e e e e e e aaaaeas 452
14.3.1 ActionExecutionSpecification (from Basiclnteractions)ccccocvvveeeiiiiieeeennnns 452
14.3.2 BehaviorExecutionSpecification (from BasicInteractions)ccccccvvvveeeernns 452
14.3.3 CombinedFragment (from Fragments)ccccceeeiiiiieiiiiiiiieeee e 453
14.3.4 ConsiderlgnoreFragment (from Fragments)cccccceviiiieereiniiieeeeniiiieeeenne 458
14.3.5 Continuation (from Fragments)coocuiiiiiiiiiieeiiiieeee e 459
14.3.6 CreationEvent (from BasiCINtEractions)cccccceeiiiriiieiiiiiieeeiiiiieee e 462
14.3.7 DestructionEvent (from BasiCINteractions)...........ccoocuveeieiiiiiieeeiiniiieee s 462
14.3.8 ExecutionEvent (from BasicINteractions)cccccovuivieiiiiiiieeeniiieee e 463
14.3.9 ExecutionOccurrenceSpecification (from Basiclnteractions)ccccccceeeernnne 464
14.3.10 ExecutionSpecification (from BasicInteractions)cccccceeveviiiieeeeniiiieneennne 464
14.3.11 Gate (from FragmMentS)ccoeiiiiieiiieiiiiiiee ettt ee e 466
14.3.12 GeneralOrdering (from BasiCINteractions)cccceeeiiiiiieeeiiiiieeee s 466

UML Superstructure Specification, v2.0 Vii

14.3.13 Interaction (from Basiclnteraction, Fragments)cccccceeeeeiieriieieeiieiiiinennn, 467

14.3.14 InteractionConstraint (from Fragments)iiiiiiiiiiieie e, 470

14.3.15 InteractionFragment (from Basiclnteractions, Fragments).............ccccvvvvvvnnnne 471

14.3.16 InteractionOperand (from Fragments)..........oovvvviviiiiiiiiiiiie e 471

14.3.17 InteractionOperator (from FragmentsS)ccccccceiiiiiiiiiiiiee e 472

14.3.18 InteractionUse (from Fragments)ooovviiiiiiiiiiiiiiiiiiinie e 473

14.3.19 Lifeline (from Basiclnteractions, Fragments)cccccceveviieieeeeeeeveveeeeeiiiieennnn, 475

14.3.20 Message (from BasiCINteractions)uuuueeuiiiiiiiiiiiiieeeeeeeeee e 477

14.3.21 MessageEnd (from Basiclnteractions)cccccoeeveiiiiiiiieeiiiiniecieeeeeeeienn 480

14.3.22 MessageKind (from BasicINteractions)uuveeeciiiiiiieiieee e 480

14.3.23 MessageOccurrenceSpecification (from Basiclnteractions)..........cccccvevvvvvvnnnnn. 480

14.3.24 MessageSort (from BasiCINteractions)ccccceveeiiiiieeeeeeiieieieeeeeeiie e 481

14.3.25 OccurrenceSpecification (from Basiclnteractions)ccccceeevvvvivveeeviivninnnnnnn. 481

14.3.26 PartDecomposition (from Fragments)cccccceeeiiiiiiiiiiiee e 482

14.3.27 SendOperationEvent (from Basiclnteractions).........ccccceeveeieieeeeeeeveveeeveieiiivennn, 485

14.3.28 SendSignalEvent (from BasicInteractions)ccccceeeeieiiiiieeeeeveceeeeeiviiinn, 486

14.3.29 Statelnvariant (from BasiCINteracCtions)cccccevceiiiiiiiiieeeeeeeeeeeeeeveenn 487

I B I - To | =10 1 SO PP PPPPPPPPPPPPRRN 488
15 State MACKINES ... 507
L15.1 OVEIVIEW ..oveieitiiiiie ettt e e e e e e e ettt s s e et e e e e e e e e e e e ee e e e ss et aeaseeeaeeeaaeeeeeeeennnes 507
15.2 ADSIFACT SYNTAX ...utvvviiiiiiiiiiiiieieeee s aaanaes 508
15.3 Class DESCIPLONScccciiiiiiiieeiiiiiiieie e e e e e e e e e e e et e eeeeaaaa s s e s e e e e aeeeeeeeeeeeennnnes 511
15.3.1 ConnectionPointReference (from BehaviorStateMachines)cccccvvvvvvvnnnnnn. 511

15.3.2 FinalState (from BehaviorStateMachings)ccccccceviiiiiiiiiiiiiiii, 513

15.3.3 Interface (from ProtocolStateMachings)evviviiiiiiiiiiieeeeeeceeee, 514

15.3.4 Port (from ProtocolStateMachings)coovvviiiiiiiiiiiiiii e 515

15.3.5 ProtocolConformance (from ProtocolStateMachings)...........ccccevvvvvvvieiiiiiinnnnnnn, 515

15.3.6 ProtocolStateMachine (from ProtocolStateMachines)ccccccevvivviiiiiiinnnnnn. 516

15.3.7 ProtocolTransition (from ProtocolStateMachines)cccccevvrivriviiiiccennn, 518

15.3.8 Pseudostate (from BehaviorStateMachings)ccccceevviiiiiiiiiiiiiiiceeiien, 522

15.3.9 PseudostateKind (from BehaviorStateMachinges)ccccccceveeeiiiiiiviieiiiiiiiinnnnn, 528

15.3.10 Region (from BehaviorStateMachines)cccccceeeiiiiiiiiieeeeieeeeeeeeeenn 529

15.3.11 State (from BehaviorStateMachines, ProtocolStateMachines) 531

15.3.12 StateMachine (from BehaviorStateMachines)cccccccviiiiiriirieiiiicee, 545

15.3.13 TimeEvent (from BehaviorStateMachings)ccccccoceiiieiiiiiiiiiiecee, 552

15.3.14 Transition (from BehaviorStateMachings)cccccccveiieiiiiiiiieieceee, 553

15.3.15 TransitionKind (from BehaviorStateMachines)cccccceiiviiiiiieeiiicenn, 561

15.3.16 Vertex (from BehaviorStateMachines)ccccccooviviiiiiiiiiiiiiiiicceeeeen 562

ST A B I - To | =10 1 TP PPPPPPPPPPPPRRN 563
16 USE CASES .oiiiiiiiiiiiii ettt 569
L16.1 OVEIVIEW ...ttt ettt e e e e e et e e e e e e et e e e e e e sata e e e eeestaaaaeaaeees 569
16.2 ADSIIACT SYNTAX ...uuitiiiiiiiiiiiii e e e e e e e e e e e e e e e e e e e s s aeannes 569
16.3 Class DESCIHPLONScccoiiiiiiiieeiiiiiiiesre e e e e e e e e e e eeeeeeeaana s e s e e e e aaeeeeeeeeeeensnnes 570

viii UML Superstructure Specification, v2.0

16.3.1 ACtOr (frOmM USECASES) ...evvvvirininiiiiiiiiieeeeeeeeeeeeeeeeeee e teetatar s se s e e e e e e eaeaaaaaeeeeeanes 570

16.3.2 Classifier (from USECASES)uuuiiiiiiiiiiieeeeeeieieeeeeeeeeteeite s e s e e e e e e e aeaaaaeeeeaeanes 572

16.3.3 Extend (from USECASES) ..uuuuiiiiiiii e e iieeee ettt s s s s e s e e e e e e e e e e e eeeeeeeeeaaannns 573

16.3.4 ExtensionPoint (from USECASES)cccvvviiiiiiiiiiiiiiiiiiiiiis i se e e e e e e e e e e e ee e eeeeeanannns 575

16.3.5 Include (from USECASES)ceeeiiiiiiiieeeiiiiee et e e 576

16.3.6 UseCase (from USECASES)ccveeeeiirririeeeiiiiieeesinireeeeesstreeeeesnnnnee e s s nnneeeesnnens 578

IR B - To | =10 1 ST TP PP PPPPPPP 582
Part Il - Supplement ..., 587
17 AUXIliary CONSIIUCES ouuuiiiiiiiiiiie e e e e 589
L17.0 OVEIVIEW ettt ettt ettt e e e e et e e e e e e s e e e e e e e e s b eeeeeeaane 589
17.2 INFOrmMatiONFIOWSoooiiiiiiiii e 589
17.2.1 InformationFlow (from InformationFIOWS)..........cccuvviiiiiiiieiiee e, 590

17.2.2 Informationitem (from InformationFIOWS)cccuviviiiiiiieeeii e 592

17.3 IMOUEIS .ttt e e e e e 594
17.3.1 Model (from MOEIS)ccoiiiiiiiie i 594

17.4 PrimMItIVETYPES ..eeieieiiiiiitiiee ettt e ettt e e e e e e e e e e e e e e e e e e snnbreeeeeeaaaes 596
17.4.1 Boolean (from PrimitiVETYPES)uuuveuieiieeiiiaaeeeeieiiiitie ettt eeea e 596

17.4.2 Integer (from PrimitiVETYPES)uveeiieeiiiieaaiie ittt 597

17.4.3 String (from PrimitiVETYPES) ...ttt e e e 598

17.4.4 UnlimitedNatural (from PrimitiveTYPES)cooviiiiiiiiiiiiiiieeeee e 599

17.5 TEMPIALES ...t e e e e e e 600
17.5.1 ParameterableElement (from Templates)cccceeieiiiiiiiiiiiiiieeeee e, 602

17.5.2 TemplateableElement (from Templates)ccoociiiiiiiiiiieii e, 604

17.5.3 TemplateBinding (from Templates)..........coooiiiiiiiiiiiiii e 606

17.5.4 TemplateParameter (from Templates) ..o 607

17.5.5 TemplateParameterSubstitution (from Templates)ccccooiiiiiiiiiiiieiianennnnnnn. 609

17.5.6 TemplateSignature (from Templates)ooooiiiiiiiiiiiiii e 610

17.5.7 Classifier (from Templates)ccocuiiiiiiiiiiiiaaa e 611

17.5.8 ClassifierTemplateParameter (from Templates)ccccccooiiiiiiiiiiiiiiiicennieeeenn. 616

17.5.9 RedefinableTemplateSignature (from Templates)oooiiiiiiiiiiiniieenenninnns 617

17.5.10 Package (from TemPlates)cccouuieiiiiiiiiiieee e 618

17.5.11 PackageableElement (from Templates)........c.uuuueeiiiiiiiiiiiiiiiiiiiieeeeeee e 620

17.5.12 NamedElement (from TemMPIAteS)ccooiiiraiiiiiiiiiiiieee e 620

17.5.13 StringExpression (from TemMPIates)........ccuuiiia e 622

17.5.14 Operation (from TempPlates)uuueiiiiiiiaiiiiiiiieeee e 624

17.5.15 Operation (from TemPIates)uuuiiiiiiiiaiiiiiiiiiie e 625

17.5.16 OperationTemplateParameter (from Templates)ccccccoviiiiiiiiiiiiiiennnnnnn. 626

17.5.17 ConnectableElement (from Templates)ccceeeeiiiiiiiiiiiiiiiiiiiieeeeee e 627

17.5.18 ConnectableElementTemplateParameter (from Templates)cccccceeeeennnn. 628

17.5.19 Property (from TemPIateS)ccooeuiiiiiiiiiiiee e 629

17.5.20 ValueSpecification (from Templates)cocccciiiiiiiiiiiiii e 630

UML Superstructure Specification, v2.0 iX

L8 PO I S o 633

L18.1 OVEIVIEW ...ttt et e e e e et e e e e e ettt e e e e e ab e e e e e easa e eaeeaeenaes 633

18.1.1 Positioning profiles versus metamodels, MOF and UMLcooeccvvvvvnnneen. 633

18.1.2 Profiles History and design reqUIremMentscccccvvvrimeeeeiieeeeeeneeisesesnnenenees 633

18.2 ADSIIACT SYNTAX ...uuiiiiiiee ettt e e et e e e e et e s e e e e e e e e e e eeeaeeees 635

18.3 ClasSS UESCIPLIONSeveeiiiiiiiiieeeeeee ettt e e e e e e e e e e e e e eeeeeeees 636

18.3.1 Class (from Profil€S)uuueeiiiieeeiiiiiiciieeee e aee e e 636

18.3.2 Extension (from Profil€S)ccooiiiiiiiiiiiee e 637

18.3.3 ExtensionENnd (from ProfileS)cccccuiiiiiiiiiieee e 639

18.3.4 Image (from Profil€S)ueueiiiieiii i 640

18.3.5 Package (from Profil€S)ccoooiiiiiiiiiiiiieeie e 641

18.3.6 Profile (from Profil@S)ceevviiieiiiii i 642

18.3.7 ProfileApplication (from Profiles)ccccvvviieiiiiiiee e 647

18.3.8 Stereotype (from Profil€S)coooiiiiiiiiie e 649

R IR A B I - To | =10 1 S PP PP PP 653

Part IV - ANNEXES ... 655
y N gL TC QAN B T F= Vo | = o P 657
ANNEX B - UML KEYWOIASccoiiiiiiiiiiiciee et 663
Annex C - Standard StEreOtYPESuiiii i 669
Annex D - Component Profile EXamples ..o 675
Annex E - Tabular NOtationNsccoooiiiiiiiiiiicre e 679
Annex F - Classifiers TaXONOMYooiiiiiiiiiiieiiiiiiin et 683
Annex G - XMI Serialization and SChemacccoovevvviiiiiiiee e, 685
10T 15 P 687

X UML Superstructure Specification, v2.0

1 Scope

This UML 2.0: Superstructure is the second of two complementary specifications that represent a major revision to the Object
Management Group’s Unified Modeling Language (UML), for which the most current version is UML v1.4. The first
specification, which serves as the architectural foundation for this specification, is the UML 2.0: Infrastructure.

This UML 2.0: Superstructure defines the user level constructs required for UML 2.0. It is complemented by UML 2.0:
Infrastructure which defines the foundational language constructs required for UML 2.0. The two complementary
specifications constitute a complete specification for the UML 2.0 modeling language.

2 Conformance

UML is a language with a very broad scope that covers a large and diverse set of application domains. Not all of its modeling
capabilities are necessarily useful in all domains or applications. This suggests that the language should be structured
modularly, with the ability to select only those parts of the language that are of direct interest. On the other hand, an excess of
this type of flexibility increases the likelihood that two different UML tools will be supporting different subsets of the
language, leading to interchange problems between them. Consequently, the definition of compliance for UML requires a
balance to be drawn between modularity and ease of interchange.

Experience with previous versions of UML has indicated that the ability to exchange models between tools is of paramount
interest to a large community of users. For that reason, this specification defines a small number of compliance levels thereby
increasing the likelihood that two or more compliant tools will support the same or compatible language subsets. However, in
recognition of the need for flexibility in learning and using the language, UML also provides the concept of language units.

2.1 Language Units

The modeling concepts of UML are grouped into language units. A language unit consists of a collection of tightly-coupled
modeling concepts that provide users with the power to represent aspects of the system under study according to a particular
paradigm or formalism. For example, the State Machines language unit enables modelers to specify discrete event-driven
behavior using a variant of the well-known statecharts formalism, while the Activities language unit provides for modeling
behavior based on a workflow-like paradigm. From the user’s perspective, this partitioning of UML means that they need only
be concerned with those parts of the language that they consider necessary for their models. If those needs change over time,
further language units can be added to the user’s repertoire as required. Hence, a UML user does not have to know the full
language to use it effectively.

In addition, most language units are partitioned into multiple increments, each adding more modeling capabilities to the
previous ones. This fine-grained decomposition of UML serves to make the language easier to learn and use, but the individual
segments within this structure do not represent separate compliance points. The latter strategy would lead to an excess of
compliance points and result to the interoperability problems described above. Nevertheless, the groupings provided by
language units and their increments do serve to simplify the definition of UML compliance as explained below.

2.2 Compliance Levels

The stratification of language units is used as the foundation for defining compliance in UML. Namely, the set of modeling
concepts of UML is partitioned into horizontal layers of increasing capability called compliance levels. Compliance levels cut
across the various language units, although some language units are only present in the upper levels. As their name suggests,
each compliance level is a distinct compliance point.

For ease of model interchange, there are just four compliance levels defined for the whole of UML.:

UML Superstructure Specification, v2.0 1

« Level 0 (LO). This compliance level is formally defined in the UML Infrastructure. It contains a single language unit
that provides for modeling the kinds of class-based structures encountered in most popular object-oriented
programming languages. As such, it provides an entry-level modeling capability. More importantly, it represents a low-
cost common denominator that can serve as a basis for interoperability between different categories of modeling tools.

« Level 1 (L1). This level adds new language units and extends the capabilities provided by Level 0. Specifically, it adds
language units for use cases, interactions, structures, actions, and activities.

« Level 2 (L2). This level extends the language units already provided in Level 1and adds language units for deployment,
state machine modeling, and profiles.

« Level 3 (L3). This level represents the complete UML. It extends the language units provided by Level 2 and adds new
language units for modeling information flows, templates, and model packaging.

The contents of language units are defined by corresponding top-tier packages of the UML metamodel, while the contents of
their various increments are defined by second-tier packages within language unit packages. Therefore, the contents of a
compliance level are defined by the set of metamodel packages that belong to that level.

As noted, compliance levels build on supporting compliance levels. The principal mechanism used in this specification for
achieving this is package merge (see “PackageMerge (from Kernel)” on page 107). Package merge allows modeling concepts
defined at one level to be extended with new features. Most importantly, this is achieved in the context of the same namespace,
which enables interchange of models at different levels of compliance as described in “Meaning and Types of Compliance” on
page 4.

For this reason, all compliance levels are defined as extensions to a single core “UML” package that defines the common
namespace shared by all the compliance levels. Level 0 is defined by the top-level metamodel shown in Figure 2.1. In this
model, “UML" is originally an empty package that simply merges in the contents of the Basic package from the UML
Infrastructure. This package, contains elementary concepts such as Class, Package, DataType, Operation, etc. (see the UML
2.0 Infrastructure specification for the complete list of contents).

PrimitiveTypes <<import>> Basic
<<merge>>
UML

Figure 2.1 - Level 0 package diagram

At the next level (Level 1), the contents of the “UML” package, now including the packages merged into Level 0 and their
contents, are extended with additional packages as shown in Figure 2.2 on page 3. Note that each of the four packages shown
in the figure merges in additional packages that are not shown in the diagram. They are defined in the corresponding package
diagrams in this specification. Consequently, the set of language units that results from this model is more than is indicated by
the top-level model in the diagram. The specific packages included at this level are listed in Table 2.3 on page 6.

2 UML Superstructure Specification, v2.0

]

BasicActivities

N

1

Basiclnteractions

<<merge>>\
<<merge>>\

[

Interfaces

/<<merge>>

/
/

/

UML

Figure 2.2 - Level 1 top-level package merges

Level 2 adds further language units and extensions to those provided by the Level 1. Once again, the package “UML” now
incorporates the complete Level 1 shown in Figure 2.3 on page 3. The actual language units and packages included at this level

of compliance are listed in Table 2.4 on page 6.

I

Nodes

N

]

SimpleTime

StructuredActivities

.

Figure 2.3 - Level 2 top-level package merges

Finally, Level3, incorporating the full UML definition, is shown in Figure 2.4 on page 4. Its contents are described in
Table 2.5 on page 7.

UML Superstructure Specification, v2.0

UseCases

/7

<<merge>>

Fragments BasicComponents
!
<<nJFrge>> << e>> *‘
<<merge>> StructuredActions
\ L <<merge>> |
<<merge>> UML - — -
< — —— —— — <<merge>>
T — InvocationActions
<<TT/19"®>> <,me+ge>> kmerge»
! ™
IntermediateAct ivities BehavorStateMachines

/ <<metge>>
‘\
% \/
Templates CompleteActions

Figure 2.4 - Level 3 top-level package merges

2.3

Compliance to a given level entails full realization of all language units that are defined for that compliance level. This also
implies full realization of all language units in all the levels below that level. “Full realization” for a language unit at a given

Meaning and Types of Compliance

N

-

ExtraStructured CompleteStructured CompleteActivities
Activities Activities
/‘N 7
Models <<merge>> <<merge>> <<merge>> / Collaborations
\ | /
<<merge>> ‘ -
™~ \ | / <<merge>>
e r'r@/e>> ProtocolStateMachines
i << >>
InformationFlows merge UML =< g
<— — R —— - >
xmerge>> _ ‘ | ~~<<merge>>
— — /1N -
— <<merge>> “ o —
— <<merge>> ~
PowerTypes | / \ h\g N

ComponentDeployments

PackagingComponents

level means supporting the complete set of modeling concepts defined for that language unit at that level.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with the Level 0 and Level 1. A
tool that is compliant at a given level must be able to import models from tools that are compliant to lower levels without loss

of information.

There are two distinct types of compliance. They are:

« Abstract syntax compliance. For a given compliance level, this entails:

« compliance with the metaclasses, their structural relationships, and any constraints defined as part of the merged

UML metamodel for that compliance level and,

« the ability to output models and to read in models based on the XMI schema corresponding to that compliance

level.

» Concrete syntax compliance. For a given compliance level, this entails

» Compliance to the notation defined in the “Notation” sections in this specification for those metamodel elements
that are defined as part of the merged metamodel for that compliance level and, by implication, the diagram types

in which those elements may appear. And, optionally:

UML Superstructure Specification, v2.0

« The ability to output diagrams and to read in diagrams based on the XMI schema defined by the Diagram
Interchange specification for notation at that level. This option requires abstract syntax and concrete syntax
compliance.

Concrete syntax compliance does not require compliance to any presentation options that are defined as part of the
notation.

Compliance for a given level can be expressed as:

- abstract syntax compliance.

« concrete syntax compliance .

- abstract syntax with concrete syntax compliance.

- abstract syntax with concrete syntax and diagram interchange compliance.

Table 2.1 Example compliance statement

Compliance Summary
Compliance level Abstract Syntax | Concrete Syntax | Diagram Interchange
Option
Level O YES YES YES
Level 1 YES YES NO
Level 2 YES NO NO

In case of tools that generate program code from models or those that are capable of executing models, it is also useful to
understand the level of support for the run-time semantics described in the various “Semantics” subsections of the
specification. However, the presence of numerous variation points in these semantics (and the fact that they are defined
informally using natural language), make it impractical to define this as a formal compliance type, since the number of
possible combinations is very large.

A similar situation exists with presentation options, since different implementors may make different choices on which ones to
support. Finally, it is recognized that some implementors and profile designers may want to support only a subset of features
from levels that are above their formal compliance level. (Note, however, that they can only claim compliance to the level that
they fully support, even if they implement significant parts of the capabilities of higher levels.) Given this potential variability,
it is useful to be able to specify clearly and efficiently, which capabilities are supported by a given implementation. To this
end, in addition to a formal statement of compliance, implementors and profile designers may also provide informal feature
support statements. These statements identify support for additional features in terms of language units and/or individual
metamodel packages, as well as for less precisely defined dimensions such as presentation options and semantic variation
points.

An example feature support statement is shown in Table 2.2 for an implementation whose compliance statement is given in
Table 2.1. In this case, the implementation adds two new language units from higher levels.

Table 2.2 Example feature support statement

Feature Support Statement

Language Unit Packages Abstract | Concrete | Semantics | Presentation
Syntax Syntax Options
Deployments Deployments::Artifacts (L2) YES YES Note (4) Note (5)
Deployments::Nodes (L2)

UML Superstructure Specification, v2.0 5

Table 2.2 Example feature support statement

Feature Support Statement

Language Unit Packages Abstract | Concrete | Semantics | Presentation
Syntax Syntax Options
State Machines StateMachines::BehaviorStateMachines (L2) | Note (1) YES Note (2) Note (3)

StateMachines::ProtocolStateMachines (L3)

Note (1):

States and state machines are limited to a single region

Shallow history pseudostates not supported

Note (2):
Note (3):

2.4

FIFO queueing in event pool

Inherited elements indicated using grey-toned lines, etc.

Compliance Level Contents

The following tables identify the packages by individual compliance levels in addition to those that are defined in lower levels
(asarule, Level (N) includes all the packages supported by Level (N-1)). The set of actual modeling features added by each of

the packages are described in the appropriate chapters of the related language unit.

Table 2.3 Metamodel packages added in Level 1

Language Unit

Metamodel Packages

Actions Actions::BasicActions

Activities Activities::Fundamental Activities
Activities::BasicActivities

Classes Classes::Kernel

Classes::Dependencies

Classes::Interfaces

General Behavior

CommonBehaviors::BasicBehaviors

Structures

CompositeStructure::InternalStructures

Interactions

Interactions::Basiclnteractions

UseCases

UseCases

Table 2.4 Metamodel packages added in Level 2

Language Unit

Metamodel Packages

Actions Actions::StructuredActions
Actions::IntermediateActions

Activities Activities::IntermediateActivities
Activities::StructuredActivities

Components Components::BasicComponents

Deployments

Deployments::Artifacts

Deployments::Nodes

UML Superstructure Specification, v2.0

Table 2.4 Metamodel packages added in Level 2

Language Unit

Metamodel Packages

General Behavior

CommonBehaviors::Communications

CommonBehaviors::SimpleTime

Interactions

Interactions::Fragments

Profiles

AuxilliaryConstructs::Profiles

Structures

CompositeStructures::InvocationActions

CompositeStructures::Ports

CompositeStructures::StructuredClasses

State Machines

StateMachines::BehaviorStateMachines

Table 2.5 Metamodel packages added in Level 3

Language Unit

Metamodel Packages

Action Actions::CompleteActions

Activities Activities::CompleteActivities
Activities::CompleteStructuredActivities
Activities::ExtraStructuredActivities

Classes Classes::AssociationClasses
Classes::PowerTypes

Components Components::PackagingComponents

Deployments

Deployments::ComponentDeployments

Information Flows

AuxilliaryConstructs::InformationFlows

Models

AuxilliaryConstructs::Models

State Machines

StateMachines::ProtocolStateMachines

Structures CompositeStructures::Collaborations
CompositeStructures::StructuredActivities
Templates AuxilliaryConstructs:: Templates

3 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

UML Superstructure Specification, v2.0

« UML 2.0 Superstructure RFP
« UML 2. Infrastructure Specification

» MOF 2.0 Specification

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification, in conjunction with the specification that complements it, the UML 2.0: Infrastructure, completely replaces
the UML 1.4.1 and UML 1.5 with Action Semantics specifications, except for the “Model Interchange Using CORBA IDL”
(see Chapter 5, Section 5.3 of the OMG UML Specification v1.4, OMG document ad/01-02-17). It is recommended that
“Model Interchange Using CORBA IDL" is retired as an adopted technology because of lack of vendor and user interest.

6.2 Architectural Alignment and MDA Support

Chapter 1, “Language Architecture” of the UML 2.0: Infrastructure explains how the UML 2.0: Infrastructure is
architecturally aligned with the UML 2.0: Superstructure that complements it. It also explains how the InfrastructureLibrary
defined in the UML 2.0: Infrastructure can be strictly reused by MOF 2.0 specifications.

It is the intent that the unified MOF 2.0 Core specification must be architecturally aligned with the UML 2.0: Infrastructure
part of this specification. Similarly, the unified UML 2.0 Diagram Interchange specification must be architecturally aligned
with the UML 2.0: Superstructure part of this specification.

The OMG’s Model Driven Architecture (MDA initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA is not itself a
technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven technology
specifications. This specification’s support for MDA is discussed in the UML 2.0: Infrastructure Appendix B, “Support for
Model Driven Architecture.”

6.3 On the Run-Time Semantics of UML

The purpose of this section of the document is to provide a very high-level view of the run-time semantics of UML and to
point out where the various elements of that view are covered in the specification. The term “run-time” is used to refer to the
execution environment. Run-time semantics, therefore, are specified as a mapping of modeling concepts into corresponding
program execution phenomena. There are, of course, other semantics relevant to UML specifications, such as the repository

8 UML Superstructure Specification, v2.0

semantics, that is, how a UML model behaves in a model repository. However, those semantics are really part of the definition
of the MOF. Still, it is worth remarking that not every concept in UML models a run-time phenomenon (e.g., the “package”
concept).

6.3.1 The Basic Premises

There are two fundamental premises regarding the nature of UML semantics. The first is the assumption that all behavior in a
modeled system is ultimately caused by actions executed by so-called “active” objects (see “Class (from Communications)”
on page 423). This includes behaviors, which are objects in UML 2, which can be active and coordinate other behaviors. The
second is that UML behavioral semantics only deal with event-driven, or discrete, behaviors. However, UML does not dictate
the amount of time between events, which can be as small as needed by the application, for example, when simulating
continuous behaviors.

6.3.2 The Semantics Architecture

Figure 6.1 identifies the key semantic areas covered by the current standard and how they relate to each other. The items in the
upper layers depend on the items in the lower layers but not the other way around. (Note that the structure of metamodel
package dependencies is somewhat similar to the dependency structure indicated here. However, they are not the same and

should be distinguished. This is because package dependencies specify repository dependencies not necessarily run-time
dependencies.)

Activities State Machines Interactions
Actions
Inter-Object Behavior Base Intra-Object Behavior Base
Structural Foundations

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

At the highest level of abstraction, it is possible to distinguish three distinct composite layers of semantic definitions. The
foundational layer is structural. This reflects the premise that there is no disembodied behavior in UML - all behavior is the
consequence of the actions of structural entities. The next layer is behavioral and provides the foundation for the semantic
description of all the higher-level behavioral formalisms (the term “behavioral formalism” refers to a formalized framework
for describing behavior, such as state machines, Petri nets, data flow graphs, etc.). This layer, represented by the shaded box in
Figure 6.1, is the behavioral semantic base and consists of three separate sub areas arranged into two sub layers. The bottom
sub layer consists of the inter-object behavior base, which deals with how structural entities communicate with each other, and
the intra-object behavior base, which addresses the behavior occurring within structural entities. The actions sub layer is
placed on top of these two. It defines the semantics of individual actions. Actions are the fundamental units of behavior in
UML and are used to define fine-grained behaviors. Their resolution and expressive power are comparable to the executable
instructions in traditional programming languages. Actions in this sub layer are available to any of the higher-level formalisms
to be used for describing detailed behaviors. The topmost layer in the semantics hierarchy defines the semantics of the higher-

UML Superstructure Specification, v2.0 9

level behavioral formalisms of UML.: activities, state machines, and interactions. Other behavioral formalisms may be added
to this layer in the future.

6.3.3 The Basic Causality Model

The “causality model” is a specification of how things happen at run time and is described in detail in the Common Behaviors
chapter on page 407. It is briefly summarized here for convenience, using the example depicted in the communication diagram
in Figure 6.2. The example shows two independent and possibly concurrent threads of causally chained interactions. The first,
identified by the thread prefix ‘A’ consists of a sequence of events that commence with activeObject-1 sending signal s1 to
activeObject-2. In turn, activeObject-2 responds by invoking operation op1() on passiveObject-1 after which it sends signal s2
to activeObject-3. The second thread, distinguished by the thread prefix ‘B, starts with activeObject-4 invoking operation
op2() on passiveObject-1. The latter responds by executing the method that realizes this operation in which it sends signal s3
to activeObject-2.

The causality model is quite straightforward: Objects respond to messages that are generated by objects executing
communication actions. When these messages arrive, the receiving objects eventually respond by executing the behavior that
is matched to that message. The dispatching method by which a particular behavior is associated with a given message
depends on the higher-level formalism used and is not defined in the UML specification (i.e., it is a semantic variation point).

Al:sl A3:s2
—> —>
activeObject-1 activeObject-2 activeObject-3
A.2:0pl()l T B.1.1:s3
B.1: op2 ()
— . .
activeObject-4 passiveObject-1

Figure 6.2 - Example illustrating the basic causality model of UML

The causality model also subsumes behaviors invoking each other and passing information to each other through arguments to
parameters of the invoked behavior, as enabled by CallBehaviorAction (see “CallBehaviorAction (from BasicActions)” on
page 237). This purely “procedural” or “process” model can be used by itself or in conjunction with the object-oriented model
of the previous example.

6.3.4 Semantics Descriptions in the Specification

The general causality model is described in the introductory part of Chapter 13 (CommonBehaviors) and also, in part, in the
introduction to Chapter 14 (Interactions) and the section on Interaction (14.3.13) and Message (14.3.20).

The structural foundations are mostly covered in two chapters. The elementary level is mostly covered in Chapter 7, where the
root concepts of UML are specified. In particular, the sections on InstanceSpecifications (7.3.22), Classes (7.3.7) Associations
(7.3.3), and Features (7.3.19). The composites level is described primarily in Chapter 9 (Composite Structures), with most of
the information related to semantics contained in sections 9.3.12 (Property concept) and 9.3.13 (StructuredClassifier). In
addition, the introduction to this chapter contains a high-level view of some aspects of composite structures.

The relationship between structure and behavior and the general properties of the Behavior concept, which are at the core of
the behavioral base are described in CommonBehaviors (in the introduction to Chapter 13 and in section 13.3.2 in particular).

10 UML Superstructure Specification, v2.0

Inter-object behavior is covered in three separate chapters. The basic semantics of communications actions are described in the
introduction to Chapter F (Actions) and, in more detail, in the sections describing the specific actions. These can potentially be
used by an object on itself, so can be inter- or intra-object. The read/write actions can also be used by one object to access
other objects, so are potentially inter- or intra-object. These actions can be used by any of the behavior formalisms in UML, so
all are potentially inter-object behaviors. However, the interactions diagram is designed specifically to highlight inter-object
behavior, under its concept of message. These are defined in the Interactions chapter (sections 14.3.20 and 14.3.21), while the
concepts of events and triggers are defined in the Communications package of CommonBehaviors (Chapter 13). Occurrence
specifications are defined in section 14.3.25 of the Interactions chapter. The other two behavior formalisms can be translated
to interactions when they use inter-object actions.

All the behavior formalisms are potentially intra-object, if they are specified to be executed by and access only one object.
However, state machines are designed specifically to model the state of a single object and respond to events arriving at that
object. Activities can be used in a similar way, but also highlight input and output dependency between behaviors, which may
reside in multiple objects. Interactions are potentially intra-object, but generally not designed for that purpose.

The various shared actions and their semantics are described in Chapter 13.

Finally, the higher-level behavioral formalisms are each described in their own chapters: Activities in Chapter 12, Interactions
in Chapter 14, and State Machines in Chapter 15.

6.4 The UML Metamodel

6.4.1 Models and What They Model

A model contains three major categories of elements: Classifiers, events, and behaviors. Each major category models
individuals in an incarnation of the system being modeled. A classifier describes a set of objects; an object is an individual
thing with a state and relationships to other objects. An event describes a set of possible occurrences; an occurrence is
something that happens that has some consequence within the system. A behavior describes a set of possible executions; an
execution is the performance of an algorithm according to a set of rules. Models do not contain objects, occurrences, and
executions, because those things are the subject of models, not their content. Classes, events, and behaviors model sets of
objects, occurrences, and executions with similar properties. Value specifications, occurrence specifications, and execution
specifications model individual objects, occurrences, and executions within a particular context. The distinction between
objects and models of objects, for example, may appear subtle, but it is important. Objects (and occurrences and executions)
are the domain of a model and, as such, are always complete, precise, and concrete. Models of objects (such as value
specifications) can be incomplete, imprecise, and abstract according to their purpose in the model.

6.4.2 Semantic Levels and Naming

A large number of UML metaclasses can be arranged into 4 levels with metasemantic relationships among the metaclasses in
the different levels that transcend different semantic categories (e.g., classifiers, events, behaviors). We have tried (with
incomplete success) to provide a consistent naming pattern across the various categories to place elements into levels and
emphasize metarelationships among related elements in different levels. The following 4 levels are important:

Type level — Represents generic types of entities in models, such as classes, states, activities, events, etc. These are the most
common constituents of models because models are primarily about making generic specifications.

Instance level — These are the things that models represent at runtime. They don’t appear in models directly (except very
occasionally as detailed examples), but they are necessary to explain the semantics of what models mean. These classes do not
appear at all in the UML2 metamodel or in UML models, but they underlie the meaning of models. We provide a brief runtime
metamodel in the Common Behavior chapter, but we do not formally define the semantics of UML using the runtime
metamodel. Such a formal definition would be a major amount of work.

UML Superstructure Specification, v2.0 11

Value specifications — A realization of UML2, compared to UML, is that values can be specified at various levels of precision.
The specification of a value is not necessarily an instance; it might be a large set of possible instances consistent with certain
conditions. What appears in models is usually not instances (individual values) but specifications of values that may or may
not be limited to a single value. In any case, models contain specifications of values, not values themselves, which are runtime
entities.

Individual appearances of a type within a context — These are roles within a generic, reusable context. When their context is
instantiated, they are also bound to contained instances, but as model elements they are reusable structural parts of their
context; they are not instances themselves. A realization of UML2 was that the things called instances in UML1 were mostly
roles: they map to instances in an instance of their container, but they are model elements, not instances, because they are
generic and can be used many times to generate many different instances.

We have established the following naming patterns:

Types : Instances : Values : Uses

Classifier, Class : Instance, Object : InstanceSpecification : Part, Role, Attribute, XXXUse (e.g., CollaborationUse)
Event : Occurrence : OccurrenceSpecification : various (e.g., Trigger)

Behavior : Execution : ExecutionSpecification : various (e.g., ActivityNode, State), XXXUse (e.g., InteractionUse)

The appearances category has too wide a variety of elements to reduce to a single pattern, although the form XXXUse is
suggested for simple cases where an appearance of an element is contained in a definition of the same kind of element.

In particular, the word “event” has been used inconsistently in the past to mean both type and instance. The word “event” now
means the type and the word “occurrence” means the instance. When necessary, the phrases “event type” (for event) and
“event occurrence” (for occurrence) may be used. Note that this is consistent with the frequent English usage “an event
occurs” = the occurrence of an event of a given type; so to describe a runtime situation, one could say “event X occurs” or “an
occurrence of event X” depending on which form is more convenient in a sentence. It is redundant and incorrect to say “an
event occurrence occurs.”

6.5 How to Read this Specification

The rest of this document contains the technical content of this specification. As background for this specification, readers are
encouraged to first read the UML.: Infrastructure specification that complements this specification. Part I, “Introduction” of
UML.: Infrastructure explains the language architecture structure and the formal approach used for its specification.
Afterwards the reader may choose to either explore the InfrastructureLibrary, described in Part I, “Infrastructure Library,” or
the Classes::Kernel package that reuses it, described in Chapter 1, “Classes.” The former specifies the flexible metamodel
library that is reused by the latter; the latter defines the basic constructs used to define the UML metamodel.

With that background the reader should be well prepared to explore the user level constructs defined in this UML:
Superstructure specification. These concepts are organized into three parts: Part I - “Structure,” Part Il - “Behavior,” and Part
11 - “Supplement.” “Part I. Structure” defines the static, structural constructs (e.g., classes, components, nodes artifacts) used
in various structural diagrams, such as class diagrams, component diagrams, and deployment diagrams. Part Il - “Behavior”
specifies the dynamic, behavioral constructs (e.g., activities, interactions, state machines) used in various behavioral diagrams,
such as activity diagrams, sequence diagrams, and state machine diagrams. “Part I. Structure” defines auxiliary constructs
(e.g., information flows, models, templates, primitive types) and the profiles used to customize UML for various domains,
platforms, and methods.

Although the chapters are organized in a logical manner and can be read sequentially, this is a reference specification and is
intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate browsing
and search.

12 UML Superstructure Specification, v2.0

6.5.1 Specification format

The concepts of UML are grouped into three major parts:
 Part I: Concepts related to the modeling of structure
« Part Il: Concepts related to the modeling of behavior

« Part I1l: Supplementary concepts

Within each part, the concepts are grouped into chapters according to modeling capability. A capability typically covers a
specific modeling formalism. For instance, all concepts related to the state machine modeling capability are gathered in the
State Machines chapter and all concepts related to the activities modeling capability are in the Activities chapter. The
Capability chapters in each part are presented in alphabetical order.

Within each chapter, there is first a brief informal description of the capability described in that chapter. This is followed by a
section describing the abstract syntax for that capability. The abstract syntax is defined by a CMOF model (i.e., the UML
metamodel) with each modeling concept represented by an instance of a MOF class or association. The model is decomposed
into packages according to capabilities. In the specification, this model is described by a set of UML class and package
diagrams showing the concepts and their relationships. The diagrams were designed to provide comprehensive information
about a related set of concepts, but it should be noted that, in many cases, the representation of a concept in a given diagram
displays only a subset of its features (the subset that is relevant in that context). The same concept may appear in multiple
diagrams with different feature subsets. For a complete specification of the features of a concept, readers should refer to its
formal concept description (explained below). When the concepts in the capability are grouped into sub packages, the
diagrams are also grouped accordingly with a heading identifying the sub package preceding each group of diagrams. In
addition, the name of the owning package is included in each figure caption.

The “Concept Definitions” section follows the abstract syntax section. This section includes formal specifications of all
concepts belonging to that capability, listed in alphabetical order. Each concept is described separately according to the format
explained below.

The final section in most chapters gives an overview of the diagrams, diagram elements, and notational rules and conventions
that are specific to that capability.

The formal concept descriptions of individual concepts are broken down into sub sections corresponding to different aspects.
In cases where a given aspect does not apply, its sub section may be omitted entirely from the class description. The following
sub sections and conventions are used to specify a concept:

» The heading gives the formal name of the concept and indicates, in parentheses, the sub package in which the concept
is defined. In some cases, there may be more than one sub package name listed. This occurs when a concept is defined
in multiple package merge increments — one per package. In a few instances, there is no package name, but the phrase
“as specialized” appears in parentheses. This indicates a “semantic” increment, which does not involve a new
increment in the metamodel and which, therefore, does not change the abstract syntax, but which adds new semantics
to previous increments (e.g., additional constraints).

« In some cases, following the heading is a brief, one- or two-sentence informal description of the meaning of a concept.
This is intended as a quick reference for those who want only the basic information about a concept.

- All the direct generalizations of a concept are listed, alphabetically, in the “Generalizations” sub section. A “direct”
generalization of a concept is a concept (e.g., a class) that is immediately above it in the hierarchy of its ancestors (i.e.,
its “parent”). Note that these items are hyperlinked in electronic versions of the document to facilitate navigation
through the metamodel class hierarchy. Readers of hardcopy versions can use the page numbers listed with the names
to rapidly locate the description of the superclass. This sub section is omitted for enumerations.

» A more detailed description of the purpose, nature, and potential usage of the concept may be provided in the

UML Superstructure Specification, v2.0 13

14

“Description” sub section. This too is informal. If a concept is defined in multiple increments, then the first part of the
description covers the top-level package and is followed, in turn, by successive description increments for each sub
package. The individual increments are identified by a sub package heading such as

Package PowerTypes

This indicates that the text that follows the heading describes the increment that was added in the PowerTypes sub
package. The description continues either until the end of the sub section or until the next sub package increment head-
ing is encountered.

This convention for describing sub package increments is applied to all other sub sections related to the concept.

The “Attributes” sub section of a concept description lists each of the attributes that are defined for that metaclass. Each
attribute is specified by its formal name, its type, and multiplicity. If no multiplicity is listed, it defaults to 0..*. This is
followed by a textual description of the purpose and meaning of the attribute. If an attribute is derived, the name will be
preceded by a slash. For example:

*body: String[1] Specifies a string that is the comment

specifies an attribute called “body” whose type is “String” and whose multiplicity is 1.

If an attribute is derived, where possible, the definition will also include a specification (usually expressed as an OCL
constraint) specifying how that attribute is derived. For instance:

/isComposite : Boolean A state with isComposite = true is said to be a composite state. A composite state is a state that
contains at least one region>

isComposite = (region > 1)

The “Associations” sub section lists all the association ends owned by the concept. The format for these is the same as
the one for attributes described above. Association ends that are specializations or redefinitions of other association
ends in superclasses are flagged appropriately. For example:

elowerValue: ValueSpecification[0..1] {subsets Element::ownedElement} The specification of the lower bound for this
multiplicity.

specifies an association end called “lowerValue” that is connected to the “ValueSpecification” class and whose multi-
plicity is 0..1. Furthermore, it is a specialization of the “ownedElement” association end of the class “Element.”

As with derived attributes, if an association end is derived, where possible, the definition will also include a
specification (usually expressed as an OCL constraint) specifying how that association end is derived.

The “Constraints” sub section contains a numerical list of all the constraints that define additional well-formedness
rules that apply to this concept. Each constraint consists of a textual description and may be followed by a formal
constraint expressed in OCL. Note that in a few cases, it may not be possible to express the constraint in OCL, in which
case the formal expression is omitted.

“Additional Operations” contains a numerical list of operations that are applicable to the concept. These may be queries
or utility operations that are used to define constraints or other operations. Where possible, operations are specified
using OCL.

The “Semantics” sub section describes the meaning of the concept in terms of its concrete manifestation. This is a
specification of the set of things that the concept models (represents) including, where appropriate, a description of the
behavior of those things (i.e., the dynamic semantics of the concept).

“Semantic Variation Points” explicitly identifies the areas where the semantics are intentionally under specified to
provide leeway for domain-specific refinements of the general UML semantics (e.g., by using stereotypes and profiles).

UML Superstructure Specification, v2.0

« The “Notation” sub section gives the basic notational forms used to represent a concept and its features in diagrams.
Only concepts that can appear in diagrams will have a notation specified. This typically includes a simple example
illustrating the basic notation. For textual notations a variant of the Backus-Naur Form (BNF) is often used to specify
the legal formats. The conventions of this BNF are:

« All non-terminals are in italics and enclosed between angle brackets (e.g., <non-terminal>).

« All terminals (keywords, strings, etc.), are enclosed between single quotes (e.g., ‘or’).

« Non-terminal production rule definitions are signified with the “::=" operator.

* Repetition of an item is signified by an asterisk placed after that item: “*’.

« Alternative choices in a production are separated by the ‘| symbol (e.g., <alternative-A> | <alternative-B>).
« Items that are optional are enclosed in square brackets (e.g., [<item-x>]).

« Where items need to be grouped they are enclosed in simple parenthesis; for example:
(<item-1> | <item-2>) *

signifies a sequence of one or more items, each of which is <item-1> or <item-2>.

« The “Presentation Options” sub section supplements the “Notation” section by providing alternative representations for
the concept or its parts. Users have the choice to use either the forms described in this sub section or the forms
described in the “Notation” sub section.

- “Style Guidelines” identifies notational conventions recommended by the specification. These are not normative but, if
applied consistently, will facilitate communication and understanding. For example, there is a style guideline that
suggests that the names of classes should be capitalized and another one that recommends that the names of abstract
classes be written out in italic font. (Note that these specific recommendations only make sense in certain writing
systems, which is why they cannot be normative.)

» The “Examples” sub section, if present, includes additional illustrations of the application of the concept and its
notation.

« “Changes from previous UML” identifies the main differences in the specification of the concept relative to UML
versions 1.5 and earlier.

6.5.2 Diagram format

The following conventions are adopted for all metamodel diagrams throughout this specification:

« An association with one end marked by a navigability arrow means that:
« the association is navigable in the direction of that end,
« the marked association end is owned by the classifier, and
« the opposite (unmarked) association end is owned by the association.

« An association with neither end marked by navigability arrows means that:
« the association is navigable in both directions,

« each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association).

« Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus:

UML Superstructure Specification, v2.0 15

« The constraint {subsets endA} means that the association end to which this constraint is applied is a specialization

of association end endA that is part of the association being specialized.

« A constraint {redefines endA} means that the association end to which this constraint is applied redefines the

association end endA that is part of the association being specialized.

- If no multiplicity is shown on an association end, it implies a multiplicity of exactly 1.

« An unlabeled dependency between two packages is interpreted as a package import relationship.

Note that some of these conventions were adopted to contend with practical issues related to the mechanics of producing this
specification, such as the unavailability of conforming modeling tools at the time the specification itself was being defined.

Therefore, they should not necessarily be deemed as recommendations for general use.

6.6

The following companies submitted and/or supported parts of this specification:

16

Acknowledgements

Tirene
88solutions

Adaptive

Advanced Concepts Center LLC
Alcatel

Acrtisan

Borland

Ceira Technologies
Commissariat a L'Energie Atomique
Computer Associates
Compuware

DaimlerChrysler

Domain Architects
Embarcadero Technologies
Enea Business Software
Ericsson

France Telecom

Fraunhofer FOKUS

Fujitsu

Gentleware

Intellicorp

Hewlett-Packard

I-Logix

International Business Machines
IONA

Jaczone

Kabira Technologies

Kennedy Carter

Klasse Objecten

KLOCwork

UML Superstructure Specification, v2.0

» Lockheed Martin

« MEGA International

« Mercury Computer

« Motorola

» MSC.Software

» Northeastern University
« Oracle

 Popkin Software

« Proforma

« Project Technology

« Sims Associates

» SOFTEAM

« Sun Microsystems
 Syntropy Ltd.

» Telelogic

« Thales Group

« TNI-Valiosys

+ Unisys

« University of Kaiserslautern
 University of Kent

+ VERIMAG

» WebGain

« X-Change Technologies

The following persons were members of the core team that designed and wrote this specification: Don Baisley, Morgan
Bjorkander, Conrad Bock, Steve Cook, Philippe Desfray, Nathan Dykman, Anders Ek, David Frankel, Eran Gery, @ystein
Haugen, Sridhar lyengar, Cris Kobryn, Birger Mgller-Pedersen, James Odell, Gunnar Overgaard, Karin Palmkvist, Guus
Ramackers, Jim Rumbaugh, Bran Selic, Thomas Weigert and Larry Williams.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Colin Atkinson, Ken Baclawski, Mariano Belaunde, Steve Brodsky, Roger Burkhart, Bruce
Douglass, Karl Frank, William Frank, Sandy Friedenthal, Sébastien Gerard, Dwayne Hardy, Mario Jeckle, Larry Johnson,
Allan Kennedy, Mitch Kokar, Thomas Kuehne, Michael Latta, Antoine Lonjon, Nikolai Mansurov, Sumeet Malhotra, Dave
Mellor, Stephen Mellor, Joaquin Miller, Jeff Mischkinksky, Hiroshi Miyazaki, Jishnu Mukerji, lleana Ober, Barbara Price,
Tom Rutt, Kendall Scott, Oliver Sims, Cameron Skinner, Jeff Smith, Doug Tolbert, and lan Wilkie.

UML Superstructure Specification, v2.0 17

18

UML Superstructure Specification, v2.0

Part | - Structure

This part defines the static, structural constructs (e.g., classes, components, nodes artifacts) used in various structural
diagrams, such as class diagrams, component diagrams, and deployment diagrams. The UML packages that support

structural modeling are shown in the figure below.

]

Classes

CompositeStructures

|
]

Components

/N

]

Deployments

Part |, Figure 1 - UML packages that support structural modeling

The function and contents of these packages are described in following chapters, which are organized by major subject areas.

UML Superstructure Specification, v2.0

19

20

UML Superstructure Specification, v2.0

7 Classes

7.1 Overview

The Classes package contains sub packages that deal with the basic modeling concepts of UML, and in particular classes
and their relationships.

Reusing packages from UML 2.0 Infrastructure

The Kernel package represents the core modeling concepts of the UML, including classes, associations, and packages.
This part is mostly reused from the infrastructure library, since many of these concepts are the same as those that are used
in, for example, MOF. The Kernel package is the central part of the UML, and primarily reuses the Constructs and
Abstractions packages of the InfrastructureLibrary.

The reuse is accomplished by merging Constructs with the relevant subpackages of Abstractions. In many cases, the
reused classes are extended in the Kernel with additional features, associations, or superclasses. In subsequent diagrams
showing abstract syntax, the subclassing of elements from the infrastructure library is always elided since this information
only adds to the complexity without increasing understandability. Each metaclass is completely described as part of this
chapter; the text from the infrastructure library is repeated here.

It should also be noted that while Abstractions contained several subpackages, Kernel is a flat structure that like
Constructs only contains metaclasses. The reason for this distinction is that parts of the infrastructure library have been
designed for flexibility and reuse, while the Kernel in reusing the infrastructure library has to bring together the different
aspects of the reused metaclasses.

The packages that are explicitly merged from the InfrastructureLibrary::Core are the following:

« Abstractions::Instances

» Abstractions::MultiplicityExpressions
« Abstractions::Literals

» Abstractions::Generalizations

« Constructs

All other packages of the InfrastructureLibrary::Core are implicitly merged through the ones that are explicitly merged

Core:: Core:: Core::
Abstractions:: Abstractions:: Abstractions::
Generalizations Literals MultiplicityExpressions

o «merge» ! 7
R ! «merge»
«merge» TT--__ i 7
Core::
Core::Constructs Kernel Abstractions::
«merge» «merge» Instances

Figure 7.1 - InfrastructureLibrary packages that are merged by Kernel
(all dependencies in the picture represent package merges)

UML Superstructure Specification, v2.0 21

7.2 Abstract Syntax

Figure 7.2 shows the package dependencies of the Kernel packages.

Kernel

«merge» /

AssociationClasses

Figure 7.2 - Subpackages of the Classes package and their dependencies

22

«merge»\\\ «merge»*\\

Dependencies

———

«merge»

\\\

. AN

PowerTypes

Interfaces

UML Superstructure Specification, v2.0

Package Kernel

+/owner
Element
0.1 {union}
+/ownedElement
* {union} +ownedComment
> ~| Comment
0..1 {subsets ownedElement} =*
+/relatedElement Eleme nt
Relationship +annotatedElement Comment
{union} 1.* * body : String
DirectedRelationship +/target
{union, 1..*
subsetsrelatedElement}
+/source
{union, 1.%

subsetsrelatedElement}

Figure 7.3 - Root diagram of the Kernel package

A

<<enumeration>>
NamedEiement VisibilityKind

name : String [0..1] DUbI“C

visibility : VisibilityKind [0..1] z;‘o"[::‘ed

/ qualifiedName : String [0..1] package

N *+imember | NamedElement
PackageableElement | /importedMember a Hion
visibility : VisibilityKind {union}
* {subsetsmember}
+/namespace +/ownedMember

subsets ownedElement}

0.1 {union Directe dRelatio nship
- union, P
subsets owne i} subsets member, A

i
+importingNamespace +elementimport Elementimport importedElement

___ _ PackageableElement
{subsets o urce, fsubsets owne dElement} visibility : VisibilityKind {subsets target} 1

subsets owner} alias: String [0..1]

DirectedRelationship

Packagelmport +importedPackage

Package
1 (subsetssource, f{subsets ownedElement) » | VISPIlY ¢ VisibilityKind .

{subsets target}
subsets owner}

+importingNamespace +packagelmport

Figure 7.4 - Namespaces diagram of the Kernel package

UML Superstructure Specification, v2.0 23

Element

Z% +owningUpper

MultiplicityElement {subsets owner} +upperValue ValueSoecificat
isOrdered : Boolean = false aluespecincation
isUnique : Boolean = true 0.1 {subsets ownedElement} 0.1
/ upper : UnlimitedNatural [0..1] +?¥E§3§°‘gﬁﬂer} +lowerValue
/ lower : Integer [0..1]

0.1 {subsets ownedElement} 4 1
NamedElement PackageableElement
Z% +type %
TypedElement yP Type
0.1

Figure 7.5 - Multiplicities diagram of the Kernel package

TypedElement ‘ PackageableElement

+operand f

ValueSpecification

{ordered, subsets ownedElement} =*

+expression Express on OpaqueExpression +instance st Soecificat
- : : P InganceValue nstanceSpecification
symbol : Stiing body [1..¥] : String {ordered} LiteralSpecification

0.1 language [0..] : String {ordered}
{subsets owner}

LiteralBoolean LiteralInteger Literal String Literal Unlimi tedNatural LiteralNull

value : Boolean value : Integer value : String value : UnlimitedNatural

Figure 7.6 - Expressions diagram of the Kernel package

24 UML Superstructure Specification, v2.0

PackageableElement

i

+constrainedElement

Element

{ordered} «

+pedfication| valueSpecification

gt

Constraint
Namesp ace +/context
0.1 {union} *
+namespace +ownedRule
>
0.1 {subsetscontext} f{subsetsownedMember} *
Figure 7.7 - Constraints diagram of the Kernel package

Package ableElement Element

ZF +owningInstance +slot Slot

InstanceSpecification

1 {subsetsowner} {subsetsownedElement} =

+owningSlot
{subsets owner}

0..1 {subsetsownedElement} 1

+value

0.1

{ordered,

ValueSpecification

subsets ownedElement} *

+definingFe ature

+owninglnstanceSpec o
+specification

{subsets owner}
ValueSpecification

0..1 {subsets ownedElement} 0..1

+d assifier

Classifier

0..*

Figure 7.8 - Instances diagram of the Kernel package

UML Superstructure Specification, v2.0

StructuralFeature

25

NamedElenment

RedefinableElement

RedefinableElenent

Namespace

Type

P

r 4

Classifier

+general

+/redefini onContext

isLeaf : Boolean = false

*

Propery

+/redefi nedElement

{union} =*

{union}

0.1
+/attribute +d asifier
funion, {subsetsredefinitionContex}
subsets feature}

isAbstract : Boolean = false

DirectedRelationship

]

Generalization

1 {subsetstarget}

isSubstitutable : Boolean

+specific +generalization
het {subsets source,
{subsetsownedElement}
subsets owner}

+/inheri ted Member NamedElement

+redefinedClassifier

* {subsetsredefinedElement}

+/general

Figure 7.9 - Classifiers diagram of the Kernel package

26

{subsetsmember}

UML Superstructure Specification, v2.0

Classifier

+/featuringClassifier 4/feature

RedefinableElement

0.* {union} {union}

‘ MultiplicityElement

Feature

isStatic : Boolean = false

‘ TypedElement

T 1

A

Structural Feature

BehavioralFeature

isReadOnly : Boolean = false

<<enumeration>>
ParameterDirectionKind

in
inout
out
return

‘ Namespace

+ownerFormalParam

‘ TypedElement

T 7

‘ MultiplicityElement ‘

Parameter

{subsets nam espace} +ownedParameter
0.1 {ordered, *
subsets ownedMember}

direction : ParameterDirectionKind = in
/ default : String

+owningP ammeter
{subsets owner}

Figure 7.10 - Features diagram of the Kernel package

UML Superstructure Specification, v2.0

+raisedException

Type

+defaultvalue
0.1 {subse ts owned Eleme nt}

ValueSpecification

27

Figure 7.11 - Operations diagram of the Kernel package

28

BehavioralFeature

7

Operation

isQuery : Boolean =fals
/isOrdered : Boolean
/isUnique : Boolean
/lower: Integer
/upper:UnlimitedNatural

0.1 +owned Param eter
Parameter
+operation *
{subsets namespace}
0..1 +precondition
+preContext {subsetsownedRule} Constraint
{subsets namespace}
0.1 +postcondition
+postContext {subsets ownedRule} «
{subsets namespace}
0..1 0..1
+bodyContext +bodyCondition
{subsets namespace} {subsets ownedRule}
+/type
4 Type
0..1

+raisedException

+redefinedOperation

*

* {subsetsredefinedElement}

UML Superstructure Specification, v2.0

A\

A\

Relationship

Classifier
Propel
- Doived Baol pf:y +memberEnd
I nvea: Boolean = *e N
A isReadOnly : Bodean = flse {ordered, sibsstsmember} +asociation Association
. isDetivedUnion : Boolean =fal isDerived : Boolean = false
+Clas +ownedAttribute ;def';‘jt'sntlriunqg oolean = 2. 0.1
Class aggregation : AggregationKind = none +owni ngAssociat
0.1 {subsets classfier, fordered, * / isComposite : Boolean +ownedEnd -0WNi Ng. ciation
subsets namespace, subsets attribute, * {ordered, fubsets asociation, 0..1]
sbsetsfeaturingClassifier subsets ownedMember} subsets memberEnd, albsets namespace.
subsetsfeature, subsets featuringClassifier}
+subsettedProperty subsets ownedMember}
+/superClass . +navigableOwnedEnd
«redefines general} * {subsets owned End}
+redefinedProperty
0.1 0.1
{subsetsredefinedElement} *) ValueSpecification

+owningProperty +defaultValue
{subsets owner} {subsets ownedElement}

+class +nested Classifier 0.1 +/opposite

0.1 {subsetsnamespace, {ordered, +endType | 1.°

subsets redefinitionContext} subsets ownedMember} <<enumeration>> {ordered}
AggregationKind Tye
+clas +ownedOperation none
. Operation shared .
0.1 {subsetsredefinitionContext, {ordered, composite
subsets namespace, subsets feature,
subsetsfeaturingClassifier} subsets
ownedMember}

Figure 7.12 - Classes diagram of the Kernel package

UML Superstructure Specification, v2.0 29

Classifier

DataType

+ownedAttribute

subsets featuringClassifier}

+enumeration

PrimitiveType

+datatype Property

0.1 Wubsetsnamespace, {ordered, *
subsets featuringClassifier, subsets attii bute,
subsets classifier} subsets ownedMember}
+datatype +owne dOperation
P Operation

o1 {subsets namespace, {ordered, «

»+ subsetsredefinitionContext, subsets feature,

subsets ownedMember}

+ownedLiteral

InstanceSpecification

7

Enumeration P

0..1 {subsetsnamespace}

Figure 7.13 - DataTypes diagram of the Kernel package

30

{ordered, *
subsets ownedM ember}

EnumerationLiteral

UML Superstructure Specification, v2.0

Namespace

PackageableElement

1

% +owningPackage

Packageable Ele ment

Type

DirectedRelationship

B

PackageMerge

Package P {subsets nam espace} +ownedMember
0.1 {redefines ownedMember} «
+package +/ownedType
gt
0..1 {subsetsnamespace} {subsetsownedMember «
+receivingPaclage +packageMerge
{subsets ource,
subsets owner} {subsets ownedElement} *
+memgedPaclkage
1 {subsetstarget}
+nestingPackage
gt
0..1 {subsets namesp ace}
+/nesedPackage *

{subsets ownedMember}

Figure 7.14 - The Packages diagram of the Kernel package

UML Superstructure Specification, v2.0

31

Figure 7.15 - Contents of Dependencies package

32

Package Dependencies

DirectedRelationship
(from Kemel)

PackageableElement
(fromKernel)

+supplier +supplierDependency Zﬁ
NamedElement 1 Dependency
. *
+client +clientDependency
1.* * Zﬁ
OpagueExpression
(from Kemel) 0.1 0.1 Abstraction Usage
+mapping
{subsets ownedElement} Zﬁ
Realization
Substitution

+contract

{subsets supplier, subsets target}

1

+substitutingClassifier

. {subsets client, subsets source}

Classifier

+substitution

1
{subsets ownedElement, subsets clientDependency}

UML Superstructure Specification, v2.0

Package Interfaces

{ordered, subsets attribute, subsets ownedMember}

Property

(from Kernel)

+ownedAttribute 0..1

* {subsets classifier, subsets namespace,

subsets featuringClassifier}

{ordered, subsets feature, subsets ownedMember}

Operation

+ownedOperation 0.1

*

BehavioredClassifier

+interface
{subsets redefinitionContext}

{subsets supplier, subsets target}

{subsets ownedElement,
subsets clientDependency}

+nestedClassifier

Classifier
(fomKermel)

ordered, subsets ownedMember}

*

1

Interface

0..1 {subsets namespace,
subsets redefinitionContext}

B

+contract

*

1 +interfaceRealization

InterfaceRealization

+implementingClassifier

{subsets client, subsets source}

Realization
(from Dependencies)

Figure 7.16 - Contents of Interfaces package

UML Superstructure Specification, v2.0

* +redefinedinterface
{subsets redefinedElement}

33

Package AssociationClasses

S— +qualifier +associationEnd
roperty @ Property
* 0..1
{ordered, subsets ownedElement} {subsets owner}
Class Association
(from Kernel) (from Kernel)

AssociationClass

Figure 7.17 - Contents of AssociationClasses package

Package PowerTypes

Classifier PackageableElement Generalization
(fromKernel)

*

0..1 +powertype +generalization

GeneralizationSet

0..* - - *
- isCovering : Boolean

+powertypeExtent isDisjoint : Boolean | +generalizationSet

Figure 7.18 - Contents of PowerTypes package

34 UML Superstructure Specification, v2.0

7.3 Class Descriptions

7.3.1 Abstraction (from Dependencies)

Generalizations

» “Dependency (from Dependencies)” on page 58

Description

An abstraction is a relationship that relates two elements or sets of elements that represent the same concept at different
levels of abstraction or from different viewpoints. In the metamodel, an Abstraction is a Dependency in which there is a
mapping between the supplier and the client.

Attributes

No additional attributes

Associations

e mapping: Expression[0..1] A composition of an Expression that states the abstraction relationship between the
supplier and the client. In some cases, such as Derivation, it is usually formal and
unidirectional. In other cases, such as Trace, it is usually informal and bidirectional. The
mapping expression is optional and may be omitted if the precise relationship between the
elements is not specified.

Constraints

No additional constraints

Semantics

Depending on the specific stereotype of Abstraction, the mapping may be formal or informal, and it may be unidirectional
or bidirectional. Abstraction has predefined stereotypes (such as «derive», «refine», and «trace») that are defined in the
Standard Profiles chapter. If an Abstraction element has more than one client element, the supplier element maps into the
set of client elements as a group. For example, an analysis-level class might be split into several design-level classes. The
situation is similar if there is more than one supplier element.

Notation

An abstraction relationship is shown as a dependency with an «abstraction» keyword attached to it or the specific
predefined stereotype name.

7.3.2 AggregationKind (from Kernel)

AggregationKind is an enumeration type that specifies the literals for defining the kind of aggregation of a property.

Generalizations

None

UML Superstructure Specification, v2.0 35

Description

AggregationKind is an enumeration of the following literal values:

e nhone Indicates that the property has no aggregation.

e shared Indicates that the property has a shared aggregation.

e composite Indicates that the property is aggregated compositely, i.e., the composite object has responsibility for the
existence and storage of the composed objects (parts).

Semantic Variation Points
Precise semantics of shared aggregation varies by application area and modeler.

The order and way in which part instances are created is not defined.
7.3.3 Association (from Kernel)

An association describes a set of tuples whose values refer to typed instances. An instance of an association is called a
link.

Generalizations
» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 48

» “Relationship (from Kernel)” on page 126

Description

An association specifies a semantic relationship that can occur between typed instances. It has at least two ends
represented by properties, each of which is connected to the type of the end. More than one end of the association may
have the same type.

An end property of an association that is owned by an end class or that is a navigable owned end of the association

indicates that the association is navigable from the opposite ends, otherwise the association is not navigable from the

opposite ends.

Attributes

* isDerived : Boolean Specifies whether the association is derived from other model elements such as other
associations or constraints. The default value is false.

Associations

e memberEnd : Property [2..*] Each end represents participation of instances of the classifier connected to the end in
links of the association. This is an ordered association. Subsets Namespace::member.

« ownedEnd : Property [*] The ends that are owned by the association itself. This is an ordered association.
Subsets Association::memberEnd, Classifier::feature, and
Namespace::ownedMember.

* navigableOwnedEnd : Property [*] The navigable ends that are owned by the association itself. Subsets
Association::ownedEnd.

e /endType: Type [1..*] References the classifiers that are used as types of the ends of the association.

36 UML Superstructure Specification, v2.0

Constraints

[1] An association specializing another association has the same number of ends as the other association.
self.parents()->forAll(p | p.memberEnd.size() = self.memberEnd.size())

[2] When an association specializes another association, every end of the specific association corresponds to an end of the
general association, and the specific end reaches the same type or a subtype of the more general end.

[3] endType is derived from the types of the member ends.

self.endType = self. memberEnd->collect(e | e.type)
[4] Only binary associations can be aggregations.

self. memberEnd->exists(aggregation <> Aggregation::none) implies self.memberEnd->size() = 2
[5] Association ends of associations with more than two ends must be owned by the association.

if memberEnd->size() > 2 then ownedEnd->includesAll(memberEnd)

Semantics

An association declares that there can be links between instances of the associated types. A link is a tuple with one value
for each end of the association, where each value is an instance of the type of the end.

When one or more ends of the association have isUnique=false, it is possible to have several links associating the same
set of instances. In such a case, links carry an additional identifier apart from their end values.

When one or more ends of the association are ordered, links carry ordering information in addition to their end values.

For an association with N ends, choose any N-1 ends and associate specific instances with those ends. Then the collection
of links of the association that refer to these specific instances will identify a collection of instances at the other end. The
multiplicity of the association end constrains the size of this collection. If the end is marked as ordered, this collection
will be ordered. If the end is marked as unique, this collection is a set; otherwise it allows duplicate elements.

Subsetting represents the familiar set-theoretic concept. It is applicable to the collections represented by association ends,
not the association itself. It may additionally apply to the extents of classifiers generally. The collection represented by
one association end may be a subset of the collection represented by another association end without being a proper
subset. That is to say, for A to be a subset of B, it is not required that collection B has a member NOT in A. Proper
subsetting implies that the superset is not empty and that the subset has fewer members; subsetting does not have this
implication. Subsetting is a relationship in the domain of extensional semantics.

Specialization is, in contrast to subsetting, a relationship in the domain of intentional semantics, which is to say it
characterized the criteria whereby membership in the collection is defined, not by the membership. One classifier may
specialize another by adding or redefining features; a set cannot specialize another set. A naive but popular and useful
view has it that as the classifier becomes more specialized, the extent of the collection(s) of classified objects narrows. In
the case of associations, subsetting ends, according to this view, correlates positively with specializing the association.
This view falls down because it ignores the case of classifiers which, for whatever reason, denote the empty set. Adding
new criteria for membership does not narrow the extent if the classifier already has a null denotation.

Redefinition is a relationship between features of classifiers within a specialization hierarchy. Redefinition may be used to
change the definition of a feature, and thereby introduce a specialized classifier in place of the original featuring
classifier, but this usage is incidental. The difference in domain (that redefinition applies to features) differentiates
redefinition from specialization.

UML Superstructure Specification, v2.0 37

Note — For n-ary associations, the lower multiplicity of an end is typically 0. The lower multiplicity for an end of an n-ary
association of 1 (or more) implies that one link (or more) must exist for every possible combination of values for the other
ends.

An association may represent a composite aggregation (i.e., a whole/part relationship). Only binary associations can be
aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most
one composite at a time. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can (where
allowed) be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite.
Compositions define transitive asymmetric relationships—their links form a directed, acyclic graph. Composition is
represented by the isComposite attribute on the part end of the association being set to true.

Semantic Variation Points
 The order and way in which part instances in a composite are created is not defined.
« The logical relationship between the derivation of an association and the derivation of its ends is not defined.

 The interaction of association specialization with association end redefinition and subsetting is not defined.

Notation

Any association may be drawn as a diamond (larger than a terminator on a line) with a solid line for each association end
connecting the diamond to the classifier that is the end’s type. An association with more than two ends can only be drawn
this way.

A binary association is normally drawn as a solid line connecting two classifiers, or a solid line connecting a single
classifier to itself (the two ends are distinct). A line may consist of one or more connected segments. The individual
segments of the line itself have no semantic significance, but they may be graphically meaningful to a tool in dragging or
resizing an association symbol.

An association symbol may be adorned as follows:

« The association’s name can be shown as a name string near the association symbol, but not near enough to an end to be
confused with the end’s name.

A slash appearing in front of the name of an association, or in place of the name if no name is shown, marks the
association as being derived.

- A property string may be placed near the association symbol, but far enough from any end to not be confused with a
property string on an end.

On a binary association drawn as a solid line, a solid triangular arrowhead next to or in place of the name of the
association and pointing along the line in the direction of one end indicates that end to be the last in the order of the ends
of the association. The arrow indicates that the association is to be read as associating the end away from the direction of
the arrow with the end to which the arrow is pointing (see Figure 7.19).

« Generalizations between associations can be shown using a generalization arrow between the association symbols.

An association end is the connection between the line depicting an association and the icon (often a box) depicting the
connected classifier. A name string may be placed near the end of the line to show the name of the association end. The
name is optional and suppressible.

Various other notations can be placed near the end of the line as follows:

« A multiplicity

38 UML Superstructure Specification, v2.0

« A property string enclosed in curly braces. The following property strings can be applied to an association end:
« {subsets <property-name>} to show that the end is a subset of the property called <property-name>.
« {redefined <end-name>} to show that the end redefines the one named <end-name>.
« {union} to show that the end is derived by being the union of its subsets.
« {ordered} to show that the end represents an ordered set.
« {bag} to show that the end represents a collection that permits the same element to appear more than once.
« {sequence} or {seq} to show that the end represents a sequence (an ordered bag).
« If the end is navigable, any property strings that apply to an attribute.

Note that by default an association end represents a set.

An open arrowhead on the end of an association indicates the end is navigable. A small x on the end of an association
indicates the end is not navigable. A visibility symbol can be added as an adornment on a navigable end to show the end’s
visibility as an attribute of the featuring classifier.

If the association end is derived, this may be shown by putting a slash in front of the name, or in place of the name if no
name is shown.

The notation for an attribute can be applied to a navigable end name as specified in the Notation subsection of “Property
(from Kernel, AssociationClasses)” on page 118.

An association with aggregationKind = shared differs in notation from binary associations in adding a hollow diamond as
a terminal adornment at the aggregate end of the association line. The diamond shall be noticeably smaller than the
diamond notation for associations. An association with aggregationKind = composite likewise has a diamond at the
aggregate end, but differs in having the diamond filled in.

Presentation Options

When two lines cross, the crossing may optionally be shown with a small semicircular jog to indicate that the lines do not
intersect (as in electrical circuit diagrams).

Various options may be chosen for showing navigation arrows on a diagram. In practice, it is often convenient to suppress
some of the arrows and crosses and just show exceptional situations:

« Show all arrows and x’s. Navigation and its absence are made completely explicit.

- Suppress all arrows and x’s. No inference can be drawn about navigation. This is similar to any situation in which
information is suppressed from a view.

» Suppress arrows for associations with navigability in both directions, and show arrows only for associations with one-
way navigability. In this case, the two-way navigability cannot be distinguished from situations where there is no
navigation at all; however, the latter case occurs rarely in practice.

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging the aggregation ends
into a single segment. Any adornments on that single segment apply to all of the aggregation ends.

Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and curved segments. The
choice of a particular set of line styles is a user choice.

UML Superstructure Specification, v2.0 39

Generalizations between associations are best drawn using a different color or line width than what is used for the

associations.

Examples

Figure 7.19 shows a binary association from Player to Year named PlayedInYear.

Team

*

« PlayedinYear

Year

year

season| *

*

team

goalie

Player

Figure 7.19 - Binary and ternary associations

The solid triangle indicates the order of reading: Player PlayedinYear Year. The figure further shows a ternary association
between Team, Year, and Player with ends named team, season, and goalie respectively.

The following example shows association ends with various adornments.

a b
A B
0..1 *
{ordered}
d
Cc D
1 0.1

{subsets b}

Figure 7.20 - Association ends with various adornments

The following adornments are shown on the four association ends in Figure 7.20.

40

Names a, b, and d on three of the ends.

Multiplicities 0..1 on a, * on b, 1 on the unnamed end, and 0..1 on d.

Specification of ordering on b.

Subsetting on d. For an instance of class C, the collection d is a subset of the collection b. This is equivalent to the OCL
constraint:

context C inv: b->includesAll(d)

UML Superstructure Specification, v2.0

The following examples show notation for navigable ends.

a b
A B
1.4 2.5
c d
C D
1.4 2.5
e f
E F
1.4 2.5
g h
G H
1.4 2.5
i j
| J
1.4 2.5

Figure 7.21 - Examples of navigable ends

In Figure 7.21:

The top pair AB shows a binary association with two navigable ends.

The second pair CD shows a binary association with two non-navigable ends.

The third pair EF shows a binary association with unspecified navigability.

The fourth pair GH shows a binary association with one end navigable and the other non-navigable.

The fifth pair 1J shows a binary association with one end navigable and the other having unspecified navigability.

Figure 7.22 shows that the attribute notation can be used for an association end owned by a class, because an association
end owned by a class is also an attribute. This notation may be used in conjunction with the line-arrow notation to make
it perfectly clear that the attribute is also an association end.

b: B[*]

Figure 7.22 - Example of attribute notation for navigable end owned by an end class

UML Superstructure Specification, v2.0 41

Figure 7.23 shows the notation for a derived union. The attribute A::b is derived by being the strict union of all of the
attributes that subset it. In this case there is just one of these, Al::b1. So for an instance of the class Al, b1 is a subset of
b, and b is derived from b1l.

/b {union}
a
A B
0.1 0..*
a bl
Al B1
0.1 0..*

{subsets b}

Figure 7.23 - Derived supersets (union)

Figure 7.24 shows the black diamond notation for composite aggregation.

1 1
1
+scrollbar
2 +title 1 +body 1
Slider
Header Panel

Figure 7.24 - Composite aggregation is depicted as a black diamond

Changes from previous UML

AssociationEnd was a metaclass in prior UML, now demoted to a member of Association. The metaatribute targetScope
that characterized AssociationEnd in prior UML is no longer supported. Fundamental changes in the abstract syntax make
it impossible to continue targetScope or replace it by a new metaattribute, or even a standard tag, there being no
appropriate model element to tag. In UML 2, the type of the property determines the nature of the values represented by
the members of an Association.

7.3.4 AssociationClass (from AssociationClasses)
A model element that has both association and class properties. An AssociationClass can be seen as an association that
also has class properties, or as a class that also has association properties. It not only connects a set of classifiers but also

defines a set of features that belong to the relationship itself and not to any of the classifiers.

Generalizations
« “Association (from Kernel)” on page 36

« “Class (from Kernel)” on page 45

42 UML Superstructure Specification, v2.0

Description

In the metamodel, an AssociationClass is a declaration of a semantic relationship between Classifiers, which has a set of
features of its own. AssociationClass is both an Association and a Class.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] An AssociationClass cannot be defined between itself and something else.
self.endType->excludes(self) and self.endType>collect(et|et.allparents()->excludes(self))

Additional Operations

[1] The operation allConnections results in the set of all AssociationEnds of the Association.

AssaociationClass::allConnections () : Set (Property);
allConnections = memberEnd->union (self.parents ()->collect (p | p.allConnections ())

Semantics

An association may be refined to have its own set of features; that is, features that do not belong to any of the connected
classifiers but rather to the association itself. Such an association is called an association class. It will be both an
association, connecting a set of classifiers and a class, and as such have features and be included in other associations.
The semantics of an association class is a combination of the semantics of an ordinary association and of a class.

An association class is both a kind of association and kind of a class. Both of these constructs are classifiers and hence
have a set of common properties, like being able to have features, having a name, etc. As these properties are inherited
from the same construct (Classifier), they will not be duplicated. Therefore, an association class has only one name, and
has the set of features that are defined for classes and associations. The constraints defined for class and association also
are applicable for association class, which implies for example that the attributes of the association class, the ends of the
association class, and the opposite ends of associations connected to the association class must all have distinct names.
Moreover, the specialization and refinement rules defined for class and association are also applicable to association class.

Note — It should be noted that in an instance of an association class, there is only one instance of the associated classifiers at
each end, i.e., from the instance point of view, the multiplicity of the associations ends are ‘1.

Notation

An association class is shown as a class symbol attached to the association path by a dashed line. The association path
and the association class symbol represent the same underlying model element, which has a single name. The name may
be placed on the path, in the class symbol, or on both, but they must be the same name.

Logically, the association class and the association are the same semantic entity; however, they are graphically distinct.
The association class symbol can be dragged away from the line, but the dashed line must remain attached to both the
path and the class symbol.

UML Superstructure Specification, v2.0 43

* Job 1.*
Person T Company
person | company
|
|
Job
salary

Figure 7.25 - An AssociationClass is depicted by an association symbol (a line) and a class symbol (a box) connected
with a dashed line. The diagram shows the association class Job, which is defined between the two classes Person
and Company.

7.3.5 BehavioralFeature (from Kernel)
A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances.

Generalizations
» “Feature (from Kernel)” on page 66

» “Namespace (from Kernel)” on page 95

Description

A behavioral feature specifies that an instance of a classifier will respond to a designated request by invoking a behavior.
BehavioralFeature is an abstract metaclass specializing Feature and Namespace. Kinds of behavioral aspects are modeled
by subclasses of BehavioralFeature.

Attributes

No additional attributes

Associations

e ownedParameter: Parameter[*] Specifies the ordered set of formal parameters owned by this BehavioralFeature.
The parameter direction can be ‘in,” “inout,” “‘out,” or ‘return’ to specify input,
output, or return parameters. Subsets Namespace::ownedMember

« raisedException: Type[*] References the Types representing exceptions that may be raised during an invocation
of this operation.

Constraints

No additional constraints

Additional Operations

[1] The query isDistinguishableFrom() determines whether two BehavioralFeatures may coexist in the same Namespace. It
specifies that they have to have different signatures.

44 UML Superstructure Specification, v2.0

BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;
isDistinguishableFrom =
if n.ocllsKindOf(BehavioralFeature)
then
if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->including(self)->including(n)->isUnique(bf | bf.ownedParameter->collect(type))
else true
endif
else true
endif

Semantics

The list of owned parameters describes the order, type, and direction of arguments that can be given when the
BehavioralFeature is invoked or which are returned when the BehavioralFeature terminates.

The owned parameters with direction in or inout define the type, and number of arguments that must be provided when
invoking the BehavioralFeature. An owned parameter with direction out, inout, or return defines the type of the argument
that will be returned from a successful invocation. A BehavioralFeature may raise an exception during its invocation.

Notation

No additional notation
7.3.6 BehavioredClassifier (from Interfaces)

Generalizations

» “BehavioredClassifier (from BasicBehaviors, Communications)” on page 419 (merge increment)

Description

A BehavioredClassifier may have an interface realization.

Associations

e interfaceRealization: InterfaceRealization [*] (Specializes Element.ownedElement and Realization.clientDependency.)
7.3.7 Class (from Kernel)
A class describes a set of objects that share the same specifications of features, constraints, and semantics.

Generalizations

» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 48

Description

Class is a kind of classifier whose features are attributes and operations. Attributes of a class are represented by instances
of Property that are owned by the class. Some of these attributes may represent the navigable ends of binary associations.

UML Superstructure Specification, v2.0 45

Attributes

No additional attributes

Associations

« nestedClassifier: Classifier [*] References all the Classifiers that are defined (nested) within the Class. Subsets
Element::ownedMember

« ownedAttribute : Property [*] The attributes (i.e., the properties) owned by the class. The association is ordered.
Subsets Classifier::attribute and Namespace::ownedMember

e ownedOperation : Operation [*] The operations owned by the class. The association is ordered. Subsets
Classifier::feature and Namespace::ownedMember

e /superClass : Class [*] This gives the superclasses of a class. It redefines Classifier::general. This is derived.

Constraints

No additional constraints

Additional Operations

[1] The inherit operation is overridden to exclude redefined properties.
Class::inherit(inhs: Set(NamedElement)) : Set(NamedElement);
inherit = inhs->excluding(inh |
ownedMember->select(oclisKindOf(RedefinableElement))->select(redefinedElement->includes(inh)))

Semantics

The purpose of a class is to specify a classification of objects and to specify the features that characterize the structure
and behavior of those objects.

Obijects of a class must contain values for each attribute that is a member of that class, in accordance with the
characteristics of the attribute, for example its type and multiplicity.

When an object is instantiated in a class, for every attribute of the class that has a specified default. If an initial value of
the attribute is not specified explicitly for the instantiation, then the default value specification is evaluated to set the
initial value of the attribute for the object.

Operations of a class can be invoked on an object, given a particular set of substitutions for the parameters of the
operation. An operation invocation may cause changes to the values of the attributes of that object. It may also return a
value as a result, where a result type for the operation has been defined. Operation invocations may also cause changes in
value to the attributes of other objects that can be navigated to, directly or indirectly, from the object on which the
operation is invoked, to its output parameters, to objects navigable from its parameters, or to other objects in the scope of
the operation’s execution. Operation invocations may also cause the creation and deletion of objects.

Notation

A class is shown using the classifier symbol. As class is the most widely used classifier, the keyword “class” need not be
shown in guillemets above the name. A classifier symbol without a metaclass shown in guillemets indicates a class.

46 UML Superstructure Specification, v2.0

Presentation Options

A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom
compartment holds a list of operations.

Attributes or operations may be presented grouped by visibility. A visibility keyword or symbol can then be given once
for multiple features with the same visibility.

Additional compartments may be supplied to show other details, such as constraints, or to divide features.

Style Guidelines

Center class name in boldface.

Capitalize the first letter of class names (if the character set supports uppercase).

Left justify attributes and operations in plain face.

Begin attribute and operation names with a lowercase letter.

Put the class name in italics if the class is abstract.

Show full attributes and operations when needed and suppress them in other contexts or when merely referring to a class.

Examples
Window Window
+ size: Area = (100, 100)
visibility: Boolean = true
+ defaultSize: Rectangle
- XWin: XWindow
Window display()
size: Area hide() _ _
visibility: Boolean - attachX(xWin: XWindow)
display()
hide()

Figure 7.26 - Class notation: details suppressed, analysis-level details, implementation-level details

UML Superstructure Specification, v2.0 47

Window

public
size: Area = (100, 100)
defaultSize: Rectangle
protected
visibility: Boolean = true
private
XWin: XWindow
public
display()
hide()
private
attachX(xWin: XWindow)

Figure 7.27 - Class notation: attributes and operations grouped according to visibility
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)
A classifier is a classification of instances, it describes a set of instances that have features in common.

Generalizations

« “Namespace (from Kernel)” on page 95
» “RedefinableElement (from Kernel)” on page 125
« “Type (from Kernel)” on page 130

Description
A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to
other classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.

Attributes

e isAbstract: Boolean If true, the Classifier does not provide a complete declaration and can typically not be
instantiated. An abstract classifier is intended to be used by other classifiers (e.g., as the target
of general metarelationships or generalization relationships). Default value is false.

Associations

e /attribute: Property [*] Refers to all of the Properties that are direct (i.e., not inherited or imported) attributes of the
classifier. Subsets Classifier::feature and is a derived union.

o [feature : Feature [*] Specifies each feature defined in the classifier. Subsets Namespace::member. This is a
derived union.

e /general : Classifier[*] Specifies the general Classifiers for this Classifier. This is derived.

48 UML Superstructure Specification, v2.0

e generalization: Generalization[*] Specifies the Generalization relationships for this Classifier. These Generalizations
navigate to more general classifiers in the generalization hierarchy. Subsets
Element::ownedElement

e [inheritedMember: NamedElement[*] Specifies all elements inherited by this classifier from the general classifiers.
Subsets Namespace::member. This is derived.

e package: Package [0..1] Specifies the owning package of this classifier, if any. Subsets
NamedElement::namespace.

e redefinedClassifier: Classifier [*] References the Classifiers that are redefined by this Classifier. Subsets
RedefinableElement::redefinedElement

Package Dependencies

e substitution : Substitution References the substitutions that are owned by this Classifier. Subsets
Element::ownedElement and NamedElement::clientDependency.)

Package PowerTypes

« powertypeExtent : GeneralizationSet Designates the GeneralizationSet of which the associated Classifier is a power
type.

Constraints

[1] The general classifiers are the classifiers referenced by the generalization relationships.
general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier cannot be both a transitively general and
transitively specific classifier of the same classifier.

not self.allParents()->includes(self)

[3] A classifier may only specialize classifiers of a valid type.
self.parents()->forAll(c | self.maySpecializeType(c))

[4] The inheritedMember association is derived by inheriting the inheritable members of the parents.
self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Package PowerTypes

[5] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of
itself nor may its instances also be its subclasses.

Additional Operations
[1] The query allFeatures() gives all of the features in the namespace of the classifier. In general, through mechanisms such as
inheritance, this will be a larger set than feature.
Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclisKindOf(Feature))
[2] The query parents() gives all of the immediate ancestors of a generalized Classifier.
Classifier::parents(): Set(Classifier);
parents = generalization.general
[3] The query allParents() gives all of the direct and indirect ancestors of a generalized Classifier.
Classifier::allParents(): Set(Classifier);

UML Superstructure Specification, v2.0 49

allParents = self.parents()->union(self.parents()->collect(p | p.allParents())
[4] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants,
subject to whatever visibility restrictions apply.
Classifier::inheritableMembers(c: Classifier): Set(NamedElement);
pre: c.allParents()->includes(self)
inheritableMembers = member->select(m | c.hasVisibilityOf(m))
[5] The query hasVisibilityOf() determines whether a named element is visible in the classifier. By default all are visible. It is
only called when the argument is something owned by a parent.
Classifier::hasVisibilityOf(n: NamedElement) : Boolean;
pre: self.allParents()->collect(c | c.member)->includes(n)

if (self.inheritedMember->includes(n)) then
hasVisibilityOf = (n.visibility <> #private)
else

hasVisibilityOf = true
[6] The query conformsTo() gives true for a classifier that defines a type that conforms to another. This is used, for example,
in the specification of signature conformance for operations.
Classifier::conformsTo(other: Classifier): Boolean;
conformsTo = (self=other) or (self.allParents()->includes(other))
[71 The query inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It is intended
to be redefined in circumstances where inheritance is affected by redefinition.
Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit = inhs
[8] The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of

the specified type. By default a classifier may specialize classifiers of the same or a more general type. It is intended to be
redefined by classifiers that have different specialization constraints.

Classifier::maySpecialize Type(c : Classifier) : Boolean;
maySpecializeType = self.oclIsKindOf(c.oclType)

Semantics
A classifier is a classification of instances according to their features.

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is
also an (indirect) instance of each of the general Classifiers. Therefore, features specified for instances of the general
classifier are implicitly specified for instances of the specific classifier. Any constraint applying to instances of the
general classifier also applies to instances of the specific classifier.

The specific semantics of how generalization affects each concrete subtype of Classifier varies. All instances of a
classifier have values corresponding to the classifier’s attributes.

A Classifier defines a type. Type conformance between generalizable Classifiers is defined so that a Classifier conforms
to itself and to all of its ancestors in the generalization hierarchy.

Package PowerTypes

The notion of power type was inspired by the notion of power set. A power set is defined as a set whose instances are
subsets. In essence, then, a power type is a class whose instances are subclasses. The powertypeExtent association relates
a Classifier with a set of generalizations that a) have a common specific Classifier, and b) represent a collection of subsets
for that class.

50 UML Superstructure Specification, v2.0

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

Classifier is an abstract model element, and so properly speaking has no notation. It is nevertheless convenient to define
in one place a default notation available for any concrete subclass of Classifier for which this notation is suitable. The
default notation for a classifier is a solid-outline rectangle containing the classifier’s name, and optionally with
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

The name of an abstract Classifier is shown in italics.

An attribute can be shown as a text string. The format of this string is specified in the Notation subsection of “Property
(from Kernel, AssociationClasses)” on page 118.

Presentation Options

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is
suppressed, no inference can be drawn about the presence or absence of elements in it. Compartment names can be used
to remove ambiguity, if necessary.

An abstract Classifier can be shown using the keyword {abstract} after or below the name of the Classifier.

The type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if there are values
in the model.

The individual properties of an attribute can be shown in columns rather than as a continuous string.

Style Guidelines

« Attribute names typically begin with a lowercase letter. Multi-word names are often formed by concatenating the words
and using lowercase for all letters except for upcasing the first letter of each word but the first.

« Center the name of the classifier in boldface.
» Center keyword (including stereotype names) in plain face within guillemets above the classifier name.

« For those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e, begin them
with an uppercase character).

« Left justify attributes and operations in plain face.
 Begin attribute and operation names with a lowercase letter.
» Show full attributes and operations when needed and suppress them in other contexts or references.

UML Superstructure Specification, v2.0 51

Examples

ClassA

name: String

shape: Rectangle

+ size: Integer [0..1]

[area: Integer {readOnly}
height: Integer=5

width: Integer

ClassB

id {redefines name}
shape: Square
height =7

/ width

Figure 7.28 - Examples of attributes
The attributes in Figure 7.28 are explained below.

« ClassA::name is an attribute with type String.

 ClassA::shape is an attribute with type Rectangle.

« ClassA::size is a public attribute of type Integer with multiplicity 0..1.

» ClassA::area is a derived attribute with type Integer. It is marked as read-only.

« ClassA::height is an attribute of type Integer with a default initial value of 5.

 ClassA::width is an attribute of type Integer.

 ClassB::id is an attribute that redefines ClassA::name.

» ClassB::shape is an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

« ClassB::height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances that overrides the
ClassA default of 5.

« ClassB::width is a derived attribute that redefines ClassA::width, which is not derived.

An attribute may also be shown using association notation, with no adornments at the tail of the arrow as shown in
Figure 7.29.

] size
Window Area

Figure 7.29 - Association-like notation for attribute

52 UML Superstructure Specification, v2.0

Package PowerTypes

For example, a Bank Account Type classifier could have a powertype association with a GeneralizationSet. This
GeneralizationSet could then associate with two Generalizations where the class (i.e., general Classifier) Bank Account
has two specific subclasses (i.e., Classifiers): Checking Account and Savings Account. Checking Account and Savings
Account, then, are instances of the power type: Bank Account Type. In other words, Checking Account and Savings
Account are both: instances of Bank Account Type, as well as subclasses of Bank Account. (For more explanation and
examples, see Examples in the GeneralizationSet section, below.)

7.3.9 Comment (from Kernel)
A comment is a textual annotation that can be attached to a set of elements.

Generalizations

« “Element (from Kernel)” on page 60.

Description
A comment gives the ability to attach various remarks to elements. A comment carries no semantic force, but may contain
information that is useful to a modeler.

A comment can be owned by any element.

Attributes
e body: String Specifies a string that is the comment.

Associations
e annotatedElement: Element[*] References the Element(s) being commented.

Constraints

No additional constraints.

Semantics

A Comment adds no semantics to the annotated elements, but may represent information useful to the reader of the
model.

Notation

A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note symbol”). The
rectangle contains the body of the Comment. The connection to each annotated element is shown by a separate dashed
line.

Presentation Options

The dashed line connecting the note to the annotated element(s) may be suppressed if it is clear from the context, or not
important in this diagram.

UML Superstructure Specification, v2.0 53

Examples

This class was added

by Alan Wright after

meeting with the ———
mission planning team. ——| Account

Figure 7.30 - Comment notation
7.3.10 Constraint (from Kernel)

A constraint is a condition or restriction expressed in natural language text or in a machine readable language for the
purpose of declaring some of the semantics of an element.

Generalizations

» “PackageableElement (from Kernel)” on page 105

Description

Constraint contains a ValueSpecification that specifies additional semantics for one or more elements. Certain kinds of
constraints (such as an association “xor” constraint) are predefined in UML, others may be user-defined. A user-defined
Constraint is described using a specified language, whose syntax and interpretation is a tool responsibility. One
predefined language for writing constraints is OCL. In some situations, a programming language such as Java may be
appropriate for expressing a constraint. In other situations natural language may be used.

Constraint is a condition (a Boolean expression) that restricts the extension of the associated element beyond what is
imposed by the other language constructs applied to that element.

Constraint contains an optional name, although they are commonly unnamed.

Attributes

No additional attributes

Associations
e constrainedElement: Element[*] The ordered set of Elements referenced by this Constraint.

e [context: Namespace [0..1] Specifies the Namespace that is the context for evaluating this constraint. This is a
derived union.

« specification: ValueSpecification[0..1] A condition that must be true when evaluated in order for the constraint to be
satisfied. Subsets Element::ownedElement.
Constraints

[1] The value specification for a constraint must evaluate to a boolean value.
Cannot be expressed in OCL.

54 UML Superstructure Specification, v2.0

[2] Evaluating the value specification for a constraint must not have side effects.
Cannot be expressed in OCL.

[3] A constraint cannot be applied to itself.
not constrainedElement->includes(self)

Semantics

A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion
that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those
elements required to evaluate the constraint specification. In addition, the context of the Constraint may be accessed, and
may be used as the namespace for interpreting names used in the specification. For example, in OCL “self” is used to refer
to the context element.

Constraints are often expressed as a text string in some language. If a formal language such as OCL is used, then tools
may be able to verify some aspects of the constraints.

In general there are many possible kinds of owners for a Constraint. The only restriction is that the owning element must
have access to the constrainedElements.

The owner of the Constraint will determine when the constraint specification is evaluated. For example, this allows an
Operation to specify if a Constraint represents a precondition or a postcondition.

Notation

A Constraint is shown as a text string in braces ({}) according to the following BNF:
<constraint> ::= ‘{* [<name> ‘:’] <Boolean-expression> ‘ }’

For an element whose notation is a text string (such as an attribute, etc.), the constraint string may follow the element text
string in braces. Figure 7.31 shows a constraint string that follows an attribute within a class symbol.

For a Constraint that applies to a single element (such as a class or an association path), the constraint string may be
placed near the symbol for the element, preferably near the name, if any. A tool must make it possible to determine the
constrained element.

For a Constraint that applies to two elements (such as two classes or two associations), the constraint may be shown as a
dashed line between the elements labeled by the constraint string (in braces). Figure 7.32 shows an {xor} constraint
between two associations.

Presentation Options

The constraint string may be placed in a note symbol and attached to each of the symbols for the constrained elements by
a dashed line. Figure 7.33 shows an example of a constraint in a note symbol.

If the constraint is shown as a dashed line between two elements, then an arrowhead may be placed on one end. The
direction of the arrow is relevant information within the constraint. The element at the tail of the arrow is mapped to the
first position and the element at the head of the arrow is mapped to the second position in the constrainedElements
collection.

For three or more paths of the same kind (such as generalization paths or association paths), the constraint may be
attached to a dashed line crossing all of the paths.

UML Superstructure Specification, v2.0 55

Examples

Stack
size: Integer {size >= 0}
push()
pop()

Figure 7.31 - Constraint attached to an attribute

/ Person
\
‘

|
!
Account

Corporation

Figure 7.32 - {xor} constraint

0.1/, boss
employee employer
Person Company
* 0..1
{self.boss->isEmpty() or
self.employer = self.boss.employer}

Figure 7.33 - Constraint in a note symbol

7.3.11 DataType (from Kernel)

Generalizations

» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 48.

56

UML Superstructure Specification, v2.0

Description

A data type is a type whose instances are identified only by their value. A DataType may contain attributes to support the
modeling of structured data types.

A typical use of data types would be to represent programming language primitive types or CORBA basic types. For
example, integer and string types are often treated as data types.

Attributes

No additional attributes

Associations

« ownedAttribute: Property[*] The Attributes owned by the DataType. Subsets Classifier::attribute and
Element::ownedMember

e ownedOperation: Operation[*] The Operations owned by the DataType. Subsets Classifier::feature and
Element::ownedMember

Constraints

No additional constraints

Semantics

A data type is a special kind of classifier, similar to a class. It differs from a class in that instances of a data type are
identified only by their value.

All copies of an instance of a data type and any instances of that data type with the same value are considered to be the
same instance. Instances of a data type that have attributes (i.e., is a structured data type) are considered to be the same if
the structure is the same and the values of the corresponding attributes are the same. If a data type has attributes, then
instances of that data type will contain attribute values matching the attributes.

Semantic Variation Points

Any restrictions on the capabilities of data types, such as constraining the types of their attributes, is a semantic variation
point.

Notation

A data type is denotated using the rectangle symbol with keyword «dataType» or, when it is referenced by (e.g., an
attribute) denoted by a string containing the name of the data type.

Examples

«dataType» size: Integer
Integer

Figure 7.34 - Notation of data type: to the left is an icon denoting a data type and to the right is a reference to a data
type that is used in an attribute.

UML Superstructure Specification, v2.0 57

7.3.12 Dependency (from Dependencies)

Generalizations
» “DirectedRelationship (from Kernel)” on page 59

« “PackageableElement (from Kernel)” on page 105

Description

A dependency is a relationship that signifies that a single or a set of model elements requires other model elements for
their specification or implementation. This means that the complete semantics of the depending elements is either
semantically or structurally dependent on the definition of the supplier element(s).

Attributes

No additional attributes

Associations

e client: NamedElement [1..*] The element(s) dependent on the supplier element(s). In some cases (such as a Trace
Abstraction) the assignment of direction (that is, the designation of the client element) is
at the discretion of the modeler, and is a stipulation.

« supplier: NamedElement [1..*] The element(s) independent of the client element(s), in the same respect and the same
dependency relationship. In some directed dependency relationships (such as Refinement
Abstractions), a common convention in the domain of class-based OO software is to put
the more abstract element in this role. Despite this convention, users of UML may
stipulate a sense of dependency suitable for their domain, which makes a more abstract
element dependent on that which is more specific.

Constraints

No additional constraints

Semantics

A dependency signifies a supplier/client relationship between model elements where the modification of the supplier may
impact the client model elements. A dependency implies the semantics of the client is not complete without the supplier.
The presence of dependency relationships in a model does not have any runtime semantics implications, it is all given in
terms of the model-elements that participate in the relationship, not in terms of their instances.

Notation

A dependency is shown as a dashed arrow between two model elements. The model element at the tail of the arrow (the
client) depends on the model element at the arrowhead (the supplier). The arrow may be labeled with an optional
stereotype and an optional name. It is possible to have a set of elements for the client or supplier. In this case, one or more
arrows with their tails on the clients are connected to the tails of one or more arrows with their heads on the suppliers. A
small dot can be placed on the junction if desired. A note on the dependency should be attached at the junction point.

58 UML Superstructure Specification, v2.0

«dependencyName»

NamedElement-1 — — — — — — = NamedElement-2

Figure 7.35 - Notation for a dependency between two elements

Examples

In the example below, the Car class has a dependency on the Vehicle Type class. In this case, the dependency is an
instantiate dependency, where the Car class is an instance of the Vehicle Type class.

«instantiate»
CarFactory ~————— — = Car

Figure 7.36 - An example of an instantiate dependency
7.3.13 DirectedRelationship (from Kernel)

A directed relationship represents a relationship between a collection of source model elements and a collection of target
model elements.

Generalizations

« “Relationship (from Kernel)” on page 126

Description

A directed relationship references one or more source elements and one or more target elements. Directed relationship is
an abstract metaclass.

Attributes
No additional attributes

Associations

e [source: Element [1..%] Specifies the sources of the DirectedRelationship. Subsets
Relationship::relatedElement. This is a derived union.

e [target: Element [1..*] Specifies the targets of the DirectedRelationship. Subsets Relationship::relatedElement.
This is a derived union.

Constraints

No additional constraints

UML Superstructure Specification, v2.0 59

Semantics

DirectedRelationship has no specific semantics. The various subclasses of DirectedRelationship will add semantics
appropriate to the concept they represent.

Notation

There is no general notation for a DirectedRelationship. The specific subclasses of DirectedRelationship will define their
own notation. In most cases the notation is a variation on a line drawn from the source(s) to the target(s).

7.3.14 Element (from Kernel)

An element is a constituent of a model. As such, it has the capability of owning other elements.

Generalizations

None

Description

Element is an abstract metaclass with no superclass. It is used as the common superclass for all metaclasses in the
infrastructure library. Element has a derived composition association to itself to support the general capability for
elements to own other elements.

Attributes

No additional attributes

Associations
e ownedComment: Comment[*] The Comments owned by this element. Subsets Element::ownedElement.

e/ ownedElement: Element[*] The Elements owned by this element. This is a derived union.

e/ owner: Element [0..1] The Element that owns this element. This is a derived union.

Constraints

[1] An element may not directly or indirectly own itself.
not self.allOwnedElements()->includes(self)

[2] Elements that must be owned must have an owner.
self.mustBeOwned() implies owner->notEmpty()

Additional Operations

[1] The query allOwnedElements() gives all of the direct and indirect owned elements of an element.
Element::allOwnedElements(): Set(Element);
allOwnedElements = ownedElement->union(ownedElement->collect(e | e.allOwnedElements()))

[2] The query mustBeOwned() indicates whether elements of this type must have an owner. Subclasses of Element that do not
require an owner must override this operation.

Element::mustBeOwned() : Boolean;
mustBeOwned = true

60 UML Superstructure Specification, v2.0

Semantics

Subclasses of Element provide semantics appropriate to the concept they represent. The comments for an Element add no
semantics but may represent information useful to the reader of the model.

Notation

There is no general notation for an Element. The specific subclasses of Element define their own notation.
7.3.15 Elementimport (from Kernel)

An element import identifies an element in another package, and allows the element to be referenced using its name
without a qualifier.

Generalizations

- “DirectedRelationship (from Kernel)” on page 59

Description

An element import is defined as a directed relationship between an importing namespace and a packageable element. The
name of the packageable element or its alias is to be added to the namespace of the importing namespace. It is also
possible to control whether the imported element can be further imported.

Attributes

e visibility: VisibilityKind Specifies the visibility of the imported PackageableElement within the importing Package.
The default visibility is the same as that of the imported element. If the imported element
does not have a visibility, it is possible to add visibility to the element import.

e alias: String [0..1] Specifies the name that should be added to the namespace of the importing Package in lieu

of the name of the imported PackagableElement. The aliased name must not clash with
any other member name in the importing Package. By default, no alias is used.

Associations
« importedElement: PackageableElement [1] Specifies the PackageableElement whose name is to be added to a
Namespace. Subsets DirectedRelationship::target.

« importingNamespace: Namespace [1] Specifies the Namespace that imports a PackageableElement from another
Package. Subsets DirectedRelationship::source and Element::owner.

Constraints

[1] The visibility of an Elementimport is either public or private.
self.visibility = #public or self.visibility = #private

[2] AnimportedElement has either public visibility or no visibility at all.
self.importedElement.visibility.notEmpty() implies self.importedElement.visibility = #public

Additional Operations

[1] The query getName() returns the name under which the imported PackageableElement will be known in the importing
namespace.

Elementimport::getName(): String;

UML Superstructure Specification, v2.0 61

getName =
if self.alias->notEmpty() then
self.alias
else
self.importedElement.name
endif

Semantics

An element import adds the name of a packageable element from a package to the importing namespace. It works by
reference, which means that it is not possible to add features to the element import itself, but it is possible to modify the
referenced element in the namespace from which it was imported. An element import is used to selectively import
individual elements without relying on a package import.

In case of a name clash with an outer name (an element that is defined in an enclosing namespace is available using its
unqualified name in enclosed namespaces) in the importing namespace, the outer name is hidden by an element import,
and the unqualified name refers to the imported element. The outer name can be accessed using its qualified name.

If more than one element with the same name would be imported to a namespace as a consequence of element imports or
package imports, the names of the imported elements must be qualified in order to be used and the elements are not added
to the importing namespace. If the name of an imported element is the same as the name of an element owned by the
importing namespace, the name of the imported element must be qualified in order to be used and is not added to the
importing namespace.

An imported element can be further imported by other namespaces using either element or package imports.

The visibility of the Elementimport may be either the same or more restricted than that of the imported element.

Notation

An element import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
element. The keyword «import» is shown near the dashed arrow if the visibility is public, otherwise the keyword «access»
is shown to indicate private visibility.

If an element import has an alias, this is used in lieu of the name of the imported element. The aliased name may be
shown after or below the keyword «import».

Presentation options

If the imported element is a package, the keyword may optionally be preceded by element, i.e., «element import».

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identifies
the imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

‘{element import” <qualified-name> ‘}’ | “{element access * <qualified-name> ‘}’
Optionally, the aliased name may be shown as well:

‘{element import * <qualified-name> * as ’ <alias> ‘}’ | *{element access ’ <qualified-name> ‘as’ <alias> ‘}’

62 UML Superstructure Specification, v2.0

Examples

The element import that is shown in Figure 7.37 allows elements in the package Program to refer to the type Time in
Types without qualification. However, they still need to refer explicitly to Types::Integer, since this element is not
imported. The Type string can be used in the Program package but cannot be further imported from that package.

Types

«datatype»
7 String
«access»
«datatype»
Integer
Program «de%ar;yé)e»
«import»

Figure 7.37 - Example of element import

In Figure 7.38, the element import is combined with aliasing, meaning that the type Types::Real will be referred to as
Double in the package Shapes.

Types
Shapes
«import»
«de;aty;lne» <o Double
eal [NTTTTee-——illl Circle
radius: Double

Figure 7.38 - Example of element import with aliasing
7.3.16 Enumeration (from Kernel)
An enumeration is a data type whose values are enumerated in the model as enumeration literals.

Generalizations

- “DataType (from Kernel)” on page 56

Description
Enumeration is a kind of data type, whose instances may be any of a number of user-defined enumeration literals.

It is possible to extend the set of applicable enumeration literals in other packages or profiles.

UML Superstructure Specification, v2.0 63

Attributes

No additional attributes

Associations

e ownedLiteral: EnumerationLiteral[*] The ordered set of literals for this Enumeration. Subsets
Element::ownedMember

Constraints

No additional constraints

Semantics

The run-time instances of an Enumeration are data values. Each such value corresponds to exactly one
EnumerationLiteral.

Notation

An enumeration may be shown using the classifier notation (a rectangle) with the keyword «enumeration». The name of
the enumeration is placed in the upper compartment. A compartment listing the attributes for the enumeration is placed
below the name compartment. A compartment listing the operations for the enumeration is placed below the attribute
compartment. A list of enumeration literals may be placed, one to a line, in the bottom compartment. The attributes and
operations compartments may be suppressed, and typically are suppressed if they would be empty.

Examples

«enumeration»
VisibilityKind
public
private
protected
package

Figure 7.39 - Example of an enumeration
7.3.17 EnumerationLiteral (from Kernel)
An enumeration literal is a user-defined data value for an enumeration.

Generalizations

» “InstanceSpecification (from Kernel)” on page 78

Description

An enumeration literal is a user-defined data value for an enumeration.

64 UML Superstructure Specification, v2.0

Attributes

No additional attributes

Associations

e enumeration: Enumeration[0..1] = The Enumeration that this EnumerationLiteral is a member of. Subsets
NamedElement::namespace

Constraints

No additional constraints

Semantics
An EnumerationL.iteral defines an element of the run-time extension of an enumeration data type.

An EnumerationLiteral has a name that can be used to identify it within its enumeration datatype. The enumeration literal
name is scoped within and must be unique within its enumeration. Enumeration literal names are not global and must be
qualified for general use.

The run-time values corresponding to enumeration literals can be compared for equality.
Notation
An EnumerationL.iteral is typically shown as a name, one to a line, in the compartment of the enumeration notation.

7.3.18 Expression (from Kernel)

An expression is a structured tree of symbols that denotes a (possibly empty) set of values when evaluated in a context.

Generalizations

» “ValueSpecification (from Kernel)” on page 132

Description

An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and
has a possibly empty sequence of operands that are value specifications.

Attributes

e symbol: String [1] The symbol associated with the node in the expression tree.

Associations

e operand: ValueSpecification[*] Specifies a sequence of operands. Subsets Element::ownedElement.

Constraints

No additional constraints

UML Superstructure Specification, v2.0 65

Semantics

An expression represents a node in an expression tree. If there are no operands, it represents a terminal node. If there are
operands, it represents an operator applied to those operands. In either case there is a symbol associated with the node.
The interpretation of this symbol depends on the context of the expression.

Notation

By default an expression with no operands is notated simply by its symbol, with no quotes. An expression with operands
is notated by its symbol, followed by round parentheses containing its operands in order. In particular contexts special
notations may be permitted, including infix operators.

Examples

xor
else
plus(x,1)
x+1

7.3.19 Feature (from Kernel)
A feature declares a behavioral or structural characteristic of instances of classifiers.

Generalizations

- “RedefinableElement (from Kernel)” on page 125

Description

A feature declares a behavioral or structural characteristic of instances of classifiers. Feature is an abstract metaclass.

Attributes

e isStatic: Boolean Specifies whether this feature characterizes individual instances classified by the classifier
(false) or the classifier itself (true). Default value is false.

Associations

» [/ featuringClassifier: Classifier [0..*] The Classifiers that have this Feature as a feature. This is a derived union.

Constraints

No additional constraints

Semantics

A feature represents some characteristic for its featuring classifiers; this characteristic may be of the classifier’s instances
considered individually (not static), or of the classifier itself (static). A Feature can be a feature of multiple classifiers.
The same feature cannot be static in one context but not another.

Semantic Variation Points

With regard to static features, two alternative semantics are recognized. A static feature may have different values for
different featuring classifiers, or the same value for all featuring classifiers.

66 UML Superstructure Specification, v2.0

In accord with this semantic variation point, inheritance of values for static features is permitted but not required by UML
2. Such inheritance is encouraged when modeling systems will be coded in languages, such as C++, Java, and C#, which
stipulate inheritance of values for static features.

Notation
No general notation. Subclasses define their specific notation.

Static features are underlined.

Presentation Options
Only the names of static features are underlined.

An ellipsis (...) as the final element of a list of features indicates that additional features exist but are not shown in that
list.

Changes from previous UML

The property isStatic in UML 2 serves in place of the metaattribute ownerScope of Feature in UML 1. The enumerated
data type ScopeKind with two values, instance and classifier, provided in UML 1 as the type for ownerScope is no longer
needed because isStatic is Boolean.

7.3.20 Generalization (from Kernel, PowerTypes)

A generalization is a taxonomic relationship between a more general classifier and a more specific classifier. Each
instance of the specific classifier is also an indirect instance of the general classifier. Thus, the specific classifier inherits
the features of the more general classifier.

Generalizations

» “DirectedRelationship (from Kernel)” on page 59

Description

A generalization relates a specific classifier to a more general classifier, and is owned by the specific classifier.

Package PowerTypes

A generalization can be designated as being a member of a particular generalization set.

Attributes

e isSubstitutable: Boolean [0..1] Indicates whether the specific classifier can be used wherever the general classifier
can be used. If true, the execution traces of the specific classifier will be a superset of
the execution traces of the general classifier.

Associations

e general: Classifier [1] References the general classifier in the Generalization relationship. Subsets
DirectedRelationship::target

e specific: Classifier [1] References the specializing classifier in the Generalization relationship. Subsets
DirectedRelationship::source and Element::owner

UML Superstructure Specification, v2.0 67

Package PowerTypes

e generalizationSet Designates a set in which instances of Generalization are considered members.

Constraints

No additional constraints

Package PowerTypes

[1] Every Generalization associated with a given GeneralizationSet must have the same general Classifier. That is, all
Generalizations for a particular GeneralizationSet must have the same superclass.

Semantics

Where a generalization relates a specific classifier to a general classifier, each instance of the specific classifier is also an
instance of the general classifier. Therefore, features specified for instances of the general classifier are implicitly
specified for instances of the specific classifier. Any constraint applying to instances of the general classifier also applies
to instances of the specific classifier.

Package PowerTypes

Each Generalization is a binary relationship that relates a specific Classifier to a more general Classifier (i.e., a subclass).
Each GeneralizationSet contains a particular set of Generalization relationships that collectively describe the way in which
a specific Classifier (or class) may be divided into subclasses. The generalizationSet associates those instances of a
Generalization with a particular GeneralizationSet.

For example, one Generalization could relate Person as a general Classifier with a Female Person as the specific
Classifier. Another Generalization could also relate Person as a general Classifier, but have Male Person as the specific
Classifier. These two Generalizations could be associated with the same GeneralizationSet, because they specify one way
of partitioning the Person class.

Notation

A Generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the
involved classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to as
the “separate target style.” See the example section below.

Package PowerTypes

A generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the involved
classifiers. The arrowhead points to the symbol representing the general classifier. When these relationships are named,
that name designates the GeneralizationSet to which the Generalization belongs. Each GeneralizationSet has a name
(which it inherits since it is a subclass of PackageableElement). Therefore, all Generalization relationships with the same
GeneralizationSet name are part of the same GeneralizationSet. This notation form is depicted in a), Figure 7.40.

When two or more lines are drawn to the same arrowhead, as illustrated in b), Figure 7.40, the specific Classifiers are part
of the same GeneralizationSet. When diagrammed in this way, the lines do not need to be labeled separately; instead the
generalization set need only be labeled once. The labels are optional because the GeneralizationSet is clearly designated.

68 UML Superstructure Specification, v2.0

Lastly in c), Figure 7.40, a GeneralizationSet can be designated by drawing a dashed line across those lines with separate
arrowheads that are meant to be part of the same set, as illustrated at the bottom of Figure 7.40. Here, as with b), the
GeneralizationSet may be labeled with a single name, instead of each line labeled separately. However, such labels are
optional because the GeneralizationSet is clearly designated.

another
Generalization Set

one Generalization Set

generalization

generalization
set name-2

generalization
set name-1

set name-1

a) GeneralizationSet sharing same general Classifier using the same generalization relationship names.

one another o -
G lizati o generalization generalization
eneralization o A Generalization Set set name-1 set name-2
Set generalization
set name-1 generalization
set name-2
el
—
another
Generalization Set

one Generalization Set
b) GeneralizationSet designation by subtypes sharing a common generalization arrowhead.

one another
Generalization P
o - Generalization Set
Set generalization generalization
set name-I~ - - set name-2

¢) GeneralizationSet sharing same general Classifier using the dashed-line notation.

Figure 7.40 - GeneralizationSet designation notations

Presentation Options

Multiple Generalization relationships that reference the same general classifier can be connected together in the “shared
target style.” See the example section below.

UML Superstructure Specification, v2.0 69

Examples

Shape Separate target style
Polygon Ellipse Spline
Shared target style
Shape 9 y
Polygon Ellipse Spline

Figure 7.41 - Examples of generalizations between classes
Package PowerTypes

In Figure 7.42, the Person class can be specialized as either a Female Person or a Male Person. Furthermore, Person’s can
be specialized as an Employee. Here, Female Person or a Male Person of Person constitute one GeneralizationSet and
Manager another. This illustration employs the notation forms depicted in the diagram above.

Person Person
d ZFemployment
gender
ender ender employment status
g g status -
emale
Employee
Male Person
Ezfrzaof Person Employee
Male
Person
Person Person
employment
gender 712 ?_ g _ a)
Female Male c | Yo
Employee emale Emplovee
Person Person ploy Ao oorale ploy

Figure 7.42 - Multiple subtype partitions (GeneralizationSets) example

70 UML Superstructure Specification, v2.0

7.3.21 GeneralizationSet (from PowerTypes)

A GeneralizationSet is a PackageableElement (from Kernel) whose instances define collections of subsets of
Generalization relationships.

Generalizations

« “PackageableElement (from Kernel)” on page 105

Description

Each Generalization is a binary relationship that relates a specific Classifier to a more general Classifier (i.e., from a class
to its superclasses). Each GeneralizationSet defines a particular set of Generalization relationships that describe the way
in which a general Classifier (or superclass) may be divided using specific subtypes. For example, a GeneralizationSet
could define a partitioning of the class Person into two subclasses: Male Person and Female Person. Here, the
GeneralizationSet would associate two instances of Generalization. Both instances would have Person as the general
classifier; however, one Generalization would involve Male Person as the specific Classifier and the other would involve
Female Person as the specific classifier. In other words, the class Person can here be said to be partitioned into two
subclasses: Male Person and Female Person. Person could also be divided into North American Person, Asian Person,
European Person, or something else. This collection of subsets would define a different GeneralizationSet that would
associate with three other Generalization relationships. All three would have Person as the general Classifier; only the
specific classifiers would differ (i.e., North American Person, Asian Person, and European Person).

Attributes

e isCovering : Boolean Indicates (via the associated Generalizations) whether or not the set of specific Classifiers are
covering for a particular general classifier. When isCovering is true, every instance of a
particular general Classifier is also an instance of at least one of its specific Classifiers for the
GeneralizationSet. When isCovering is false, there are one or more instances of the particular
general Classifier that are not instances of at least one of its specific Classifiers defined
for the GeneralizationSet. For example, Person could have two Generalization relationships
each with a different specific Classifier: Male Person and Female Person. This
GeneralizationSet would be covering because every instance of Person would be an instance of
Male Person or Female Person. In contrast, Person could have a three Generalization
relationship involving three specific Classifiers: North American Person, Asian Person, and
European Person. This GeneralizationSet would not be covering because there are instances of
Person for which these three specific Classifiers do not apply. The first example, then, could be
read: any Person would be specialized as either being a Male Person or a Female Person—
and nothing else; the second could be read: any Person would be specialized as being North
American Person, Asian Person, European Person, or something else.

< isDisjoint : Boolean Indicates whether or not the set of specific Classifiers in a Generalization relationship have
instance in common. If isDisjoint is true, the specific Classifiers for a particular
GeneralizationSet have no members in common; that is, their intersection is empty. If
isDisjoint is false, the specific Classifiers in a particular GeneralizationSet have one or more
members in common; that is, their intersection is not empty. For example, Person could have
two Generalization relationships, each with the different specific Classifier: Manager or Staff.
This would be disjoint because every instance of Person must either be a Manager or Staff. In
contrast, Person could have two Generalization relationships involving two specific (and non-
covering) Classifiers: Sales Person and Manager. This GeneralizationSet would not be disjoint
because there are instances of Person that can be a Sales Person and a Manager.

UML Superstructure Specification, v2.0 71

Associations

e generalization : Generalization [*] Designates the instances of Generalization that are members of a given
GeneralizationSet (see constraint [1] below).

e powertype : Classifier [0..1] Designates the Classifier that is defined as the power type for the associated
GeneralizationSet (see constraint [2] below).

Constraints

[1] Every Generalization associated with a particular GeneralizationSet must have the same general Classifier.
generalization->collect(g | g.general)->asSet()->size() <= 1

[2] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of
itself nor may its instances be its subclasses.

Semantics

The generalizationSet association designates the collection of subsets to which the Generalization link belongs. All of the
Generalization links that share a given general Classifier are divided into subsets (e.g., partitions or overlapping subset
groups) using the generalizationSet association. Each collection of subsets represents an orthogonal dimension of
specialization of the general Classifier.

As mentioned above, in essence, a power type is a class whose instances are subclasses of another class. Power types,
then, are metaclasses with an extra twist: the instances can also be subclasses. The powertype association relates a
classifier to the instances of that classifier, which are the specific classifiers identified for a GeneralizationSet. For
example, the Bank Account Type classifier could associate with a GeneralizationSet that has Generalizations with specific
classifiers of Checking Account and Savings Account. Here, then, Checking Account and Savings Account are instances
of Bank Account Type. Furthermore, if the Generalization relationship has a general classifier of Bank Account, then
Checking Account and Savings Account are also subclasses of Bank Account. Therefore, Checking Account and Savings
Account are both instances of Bank Account Type and subclasses of Bank Account. (For more explanation and examples
see “Examples” on page 74.)

Notation

The notation to express the grouping of Generalizations into GeneralizationSets was presented in the Notation section of
Generalization, above. To indicate whether or not a generalization set is covering and disjoint, each set should be labeled
with one of the constraints indicated below.

{complete, disjoint} - Indicates the generalization set is covering and its specific Classifiers have no
common instances.

{incomplete, disjoint} - Indicates the generalization set is not covering and its specific Classifiers have no
common instances*.

{complete, overlapping} - Indicates the generalization set is covering and its specific Classifiers do share
common instances.

{incomplete, overlapping} - Indicates the generalization set is not covering and its specific Classifiers do share
common instances.

* default is {incomplete, disjoint}

Figure 7.43 - Generalization set constraint notation

72 UML Superstructure Specification, v2.0

Graphically, the GeneralizationSet constraints are placed next to the sets, whether the common arrowhead notation is
employed of the dashed line, as illustrated below..

{Generalization {Generalization
Set constraint-1} Set constraint-2}

(a) GeneralizationSet constraint when sharing common generalization arrowhead.

{Generalization

Set constrain_t—S} —_ — - {Generalization

Set constraint-4}

(b) GeneralizationSet constraint using dashed-line notation.

Figure 7.44 - GeneralizationSet constraint notation

Power type specification is indicated by placing the name of the powertype Classifier—preceded by a colon—next to the
GeneralizationSet graphically containing the specific classifiers that are the instances of the power type. The illustration
below indicates how this would appear for both the “shared arrowhead” and the “dashed-line” notation for
GeneralizationSets.

UML Superstructure Specification, v2.0 73

(a) Power type specification when sharing common generalization arrowhead

PowerType

Classifier-1

General

Classifier

PowerType
Classifier-2

: powertype classifier-1

A

: powertype classifier-2

Specific
Classifier-1

Specific
Classifier-2

Specific
Classifier-3

PowerType

Classifier-1

General

Classifier

PowerType
Classifier-2

: powertype classifier-

A

Specific
Classifier-1

Specific
Classifier-2

Specific
Classifier-3

(b) Power type specification using dashed-line notation

Figure 7.45 - Power type notation

Examples

: powertype classifier-2

In the illustration below, the Person class can be specialized as either a Female Person or a Male Person. Because this
GeneralizationSet is partitioned (i.e., is constrained to be complete and disjoint), each instance of Person must either be a
Female Person or a Male Person; that is, it must be one or the other and not both. (Therefore, Person is an abstract class
because a Person object may not exist without being either a Female Person or a Male Person.) Furthermore, a Person
object can be specialized as an Employee. The generalization set here is expressed as {incomplete, disjoint}, which means
that instances of Persons can be subset as Employees or some other unnamed collection that consists of all non-Employee
instances. In other words, Persons can either be an Employee or in the complement of Employee, and not both. Taken
together, the diagram indicates that a Person may be 1) either a Male Person or Female Person, and 2) an Employee or
not. When expressed in this manner, it is possible to partition the instances of a classifier using a disjunctive normal form

(DNF).

74

UML Superstructure Specification, v2.0

Person

{complete, {incomplete,
disjoint} disjoint}

An incomplete partition
Female indicating that a Person
A complete partition Employee can also be an Employee
indicating that a Person Person or not.

may be subtypl)ed as
either a Female Person

or a Male Person. Male

Person

Figure 7.46 - Multiple ways of dividing subtypes (generalization sets) and constraint examples

Grouping the objects in our world by categories, or classes, is an important technique for organizations. For instance, one
of the ways botanists organize trees is by species. In this way, each tree we see can be classified as an American elm,
sugar maple, apricot, saguaro—or some other species of tree. The class diagram below expresses that each Tree Species
classifies zero or more instances of Tree, and each Tree is classified as exactly one Tree Species. For example, one of the
instances of Tree could be the tree in your front yard, the tree in your neighbor’s backyard, or trees at your local nursery.
Instances of Tree Species, such as sugar maple and apricot. Furthermore, this figure indicates the relationships that exist
between these two sets of objects. For instance, the tree in your front yard might be classified as a sugar maple, your
neighbor’s tree as an apricot, and so on. This class diagram expresses that each Tree Species classifies zero or more
instances of Tree, and each Tree is classified as exactly one Tree Species. It also indicates that each Tree Species is
identified with a Leaf Pattern and has a general location in any number of Geographic Locations. For example, the
saguaro cactus has leaves reduced to large spines and is generally found in southern Arizona and northern Sonora.
Additionally, this figure indicates each Tree has an actual location at a particular Geographic Location. In this way, a
particular tree could be classified as a saguaro and be located in Phoenix, Arizona.

Lastly, this diagram illustrates that Tree is subtyped as American EIm, Sugar Maple, Apricot, or Saguaro—or something
else. Each subtype, then, can have its own specialized properties. For instance, each Sugar Maple could have a yearly
maple sugar yield of some given quantity, each Saguaro could be inhabited by zero or more instances of a Gila
Woodpecker, and so on. At first glance, it would seem that a modeler should only use either the Tree Species class or the
subclasses of Tree—since the instances of Tree Species are the same as the subclasses of tree. In other words, it seems
redundant to represent both on the same diagram. Furthermore, having both would seem to cause potential diagram
maintenance issues. For instance, if botanists got together and decided that the American elm should no longer be a
species of tree, the American EIm object would then be removed as an instance of Tree Species. To maintain the integrity
of our model in such a situation, the American EIm subtype of Tree must also be removed. Additionally, if a new species
were added as a subtype of Tree, that new species would have to be added as an instance of Tree Species. The same kind
of situation exists if the name of a tree species were changed—both the subtype of Tree and the instance of Tree Species
would have to be modified accordingly.

As it turns out, this apparent redundancy is not a redundancy semantically (although it may be implemented that way).
Different modeling approaches depicted above are not really all that different. In reality, the subtypes of Tree and the
instances of Tree Species are the same objects. In other words, the subtypes of Tree are instances of Tree Species.
Furthermore, the instances of Tree Species are the subtypes of Tree. The fact that an instance of Tree Species is called
sugar maple and a subtype of Tree is called Sugar Maple is no coincidence. The sugar maple instance and Sugar Maple
subtype are the same object. The instances of Tree Species are—as the name implies—types of trees. The subtypes of
Tree are—by definition—types of trees. While Tree may be divided into various collections of subsets (based on size or

UML Superstructure Specification, v2.0 75

age, for example), in this example it is divided on the basis of species. Therefore, the integrity issue mentioned above is
not really an issue here. Deleting the American EIm subtype from the collection of Tree subtypes does not require also
deleting the corresponding Tree Species instance, because the American EIm subtype and the corresponding Tree Species
instance are the same object.

tree tree species
— peces 1 Tree
Tree Species
* * 1
actual general leaf
{disjoint, location locations pattern
incomplete} 1 * 1
: Tree Species Geographic Leaf
Location Pattern
_— Sugar
Maple
— Apricot
American
Elm
] Saguaro

Figure 7.47 - Power type example and notation

As established above, the instances of Classifiers can also be Classifiers. (This is the stuff that metamodels are made of.)
These same instances, however, can also be specific classifiers (i.e., subclasses) of another classifier. When this occurs,
we have what is called a power type. Formally, a power type is a classifier whose instances are also subclasses of another
classifier.

In the examples above, Tree Species is a power type on the Tree type. Therefore, the instances of Tree Species are
subtypes of Tree. This concept applies to many situations within many lines of business. Figure 7.48 depicts other
examples of power types. The name on the generalization set beginning with a colon indicates the power type. In other
words, this name is the name of the type of which the subtypes are instances.

Diagram (a) in the figure below, then, can be interpreted as: each instance of Account is classified with exactly one
instance of Account Type. It can also be interpreted as: the subtypes of Account are instances of Account Type. This
means that each instance of Checking Account can have its own attributes (based on those defined for Checking Account
and those inherited from Account), such as account number and balance. Additionally, it means that Checking Account as
an object in its own right can have attributes, such as interest rate and maximum delay for withdrawal. (Such attributes
are sometimes referred to as class variables, rather than instance variables.) The example (b) depicts a vehicle-modeling
example. Here, each Vehicle can be subclassed as either a Truck or a Car or something else. Furthermore, Truck and Car
are instances of Vehicle Type. In (c), Disease Occurrence classifies each occurrence of disease (e.g., my chicken pox and
your measles). Disease Classification is the power type whose instances are classes such as Chicken Pox and Measles.

76 UML Superstructure Specification, v2.0

account classifier vehicle category
Account 1 Vehicle
Account [% Type Vehicle [+ Type
account classified vehicle
{disjoint, incomplete} {disjoint, incomplete}
Checking :Account Type :Vehicle Type
Account Truck
Savings Car
Account a
(a) Bank account/account type example (b) Vehicle/vehicle type example
disease classifier service category
Disease 1| Disease Installed 1 T%Iephone
o) Classification Telephone ervice
ccurrence classified disease Service installed service Category

{disjoint, incomplete}
: Telephone Service Category

{disjoint, incomplete}

: Disease Classification
Chicken Call
Pox Waiting
Measles Call
Transferring

(c) Disease Occurrence/Disease Classification example (d) Telephone service example

Figure 7.48 - Other power type examples

Labeling collections of subtypes with the power type becomes increasingly important when a type has more than one
power type. The figure below is one such example. Without knowing which subtype collection contains Policy Coverage
Types and which Insurance Lines, clarity is compromised. This figure depicts an even more complex situation. Here, a
power type is expressed with multiple collections of subtypes. For instance, a Policy can be subtyped as either a Life,
Health, Property/Casualty, or some other Insurance Line. Furthermore, a Property/Casualty policy can be further subtyped
as Automobile, Equipment, Inland Marine, or some other Property/Casualty line of insurance. In other words, the
subtypes in the collection labeled Insurance Line are all instances of the Insurance Line power type.

UML Superstructure Specification, v2.0 77

Policy issued p0"C¥ insurance Iini
Coverage 1 Policy Insurance
” -
Type coverage type issued policy Line
{disjoint, complete}4 {disjoint, complete}
:Policy Coverage Type :Insurance Line
Group Life
Policy | Policy
Individual Health
Policy —| Policy
Property/
Casualty
Policy

Figure 7.49 - Other power type examples

Power types are a conceptual, or analysis, notion. They express a real-world situation; however, implementing them may
not be easy and efficient. To implement power types with a relational database would mean that the instances of a relation
could also be relations in their own right. In object-oriented implementations, the instances of a class could also be
classes. However, if the software implementation cannot directly support classes being objects and vice versa, redundant
structures must be defined. In other words, unless you’re programming in Smalltalk or CLOS, the designer must be aware
of the integrity problem of keeping the list of power type instances in sync with the existing subclasses. Without the
power type designation, implementors would not be aware that they need to consider keeping the subclasses in sync with
the instances of the power type; with the power type indication, the implementor knows that a) a data integrity situation
exists, and b) how to manage the integrity situation. For example, if the Life Policy instance of Insurance Line were
deleted, the subclass called Life Policy can no longer exist. Or, if a new subclass of Policy were added, a new instance
must also be added to the appropriate power type.

7.3.22 InstanceSpecification (from Kernel)
An instance specification is a model element that represents an instance in a modeled system.

Generalizations

« “PackageableElement (from Kernel)” on page 105

Description

An instance specification specifies existence of an entity in a modeled system and completely or partially describes the
entity. The description may include:

« Classification of the entity by one or more classifiers of which the entity is an instance. If the only classifier specified is
abstract, then the instance specification only partially describes the entity.

» The kind of instance, based on its classifier or classifiers. For example, an instance specification whose classifier is a
class describes an object of that class, while an instance specification whose classifier is an association describes a link
of that association.

78 UML Superstructure Specification, v2.0

« Specification of values of structural features of the entity. Not all structural features of all classifiers of the instance
specification need be represented by slots, in which case the instance specification is a partial description.

- Specification of how to compute, derive, or construct the instance (optional).

InstanceSpecification is a concrete class.

Attributes

No additional attributes

Associations

e classifier : Classifier [0..*] The classifier or classifiers of the represented instance. If multiple classifiers are
specified, the instance is classified by all of them.

e slot: Slot [*] A slot giving the value or values of a structural feature of the instance. An instance
specification can have one slot per structural feature of its classifiers, including
inherited features. It is not necessary to model a slot for each structural feature, in
which case the instance specification is a partial description. Subsets
Element::ownedElement

« specification : ValueSpecification [0..1] A specification of how to compute, derive, or construct the instance.
Subsets Element::ownedElement

Constraints

[1] The defining feature of each slot is a structural feature (directly or inherited) of a classifier of the instance specification.
slot->forAll(s | classifier->exists (c | c.allFeatures()->includes (s.definingFeature)))

[2] One structural feature (including the same feature inherited from multiple classifiers) is the defining feature of at most one
slot in an instance specification.

classifier->forAll(c | (c.allFeatures()->forAll(f | slot->select(s | s.definingFeature = f)->size() <= 1)))

Semantics

An instance specification may specify the existence of an entity in a modeled system. An instance specification may
provide an illustration or example of a possible entity in a modeled system. An instance specification describes the entity.
These details can be incomplete. The purpose of an instance specification is to show what is of interest about an entity in
the modeled system. The entity conforms to the specification of each classifier of the instance specification, and has
features with values indicated by each slot of the instance specification. Having no slot in an instance specification for
some feature does not mean that the represented entity does not have the feature, but merely that the feature is not of
interest in the model.

An instance specification can represent an entity at a point in time (a snapshot). Changes to the entity can be modeled
using multiple instance specifications, one for each snapshot.

Note — When used to provide an illustration or example of an entity in a modeled system, an InstanceSpecification class does
not depict a precise run-time structure. Instead, it describes information about such structures. No conclusions can be drawn
about the implementation detail of run-time structure. When used to specify the existence of an entity in a modeled system, an
instance specification represents part of that system. Instance specifications can be modeled incompletely — required
structural features can be omitted, and classifiers of an instance specification can be abstract, even though an actual entity
would have a concrete classification.

UML Superstructure Specification, v2.0 79

Notation

An instance specification is depicted using the same notation as its classifier, but in place of the classifier name appears
an underlined concatenation of the instance name (if any), a colon (*:”) and the classifier name or names. The convention
for showing multiple classifiers is to separate their names by commas.

Names are optional for UML classifiers and instance specifications. The absence of a name in a diagram may reflect its
absence in the underlying model.

The standard notation for an anonymous instance specification of an unnamed classifier is an underlined colon (*:”).

If an instance specification has a value specification as its specification, the value specification is shown either after an
equal sign (“=") following the name, or without an equal sign below the name. If the instance specification is shown using
an enclosing shape (such as a rectangle) that contains the name, the value specification is shown within the enclosing
shape.

streetName: String
"S. Crown Ct."

Figure 7.50 - Specification of an instance of String

Slots are shown using similar notation to that of the corresponding structural features. Where a feature would be shown
textually in a compartment, a slot for that feature can be shown textually as a feature name followed by an equal sign
(*=") and a value specification. Other properties of the feature, such as its type, can optionally be shown.

myAddress: Address

streetName ="S. Crown Ct."
streetNumber : Integer = 381

Figure 7.51 - Slots with values

An instance specification whose classifier is an association represents a link and is shown using the same notation as for
an association, but the solid path or paths connect instance specifications rather than classifiers. It is not necessary to
show an underlined name where it is clear from its connection to instance specifications that it represents a link and not
an association. End names can adorn the ends. Navigation arrows can be shown, but if shown, they must agree with the
navigation of the association ends.

80 UML Superstructure Specification, v2.0

Don : Person | father son | Josh: Person

Figure 7.52 - Instance specifications representing two objects connected by a link

Presentation Options

A slot value for an attribute can be shown using a notation similar to that for a link. A solid path runs from the owning
instance specification to the target instance specification representing the slot value, and the name of the attribute adorns
the target end of the path. Navigability, if shown, must be only in the direction of the target.

7.3.23 InstanceValue (from Kernel)
An instance value is a value specification that identifies an instance.

Generalizations

« “ValueSpecification (from Kernel)” on page 132

Description

An instance value specifies the value modeled by an instance specification.

Attributes

No additional attributes

Associations

e instance: InstanceSpecification [1] The instance that is the specified value.

Constraints

No additional constraints

Semantics

The instance specification is the specified value.

Notation

An instance value can appear using textual or graphical notation. When textual, as can appear for the value of an attribute
slot, the name of the instance is shown. When graphical, a reference value is shown by connecting to the instance. See
“InstanceSpecification.”

UML Superstructure Specification, v2.0 81

7.3.24 Interface (from Interfaces)

Generalizations

« “Classifier (from Kernel, Dependencies, PowerTypes)” on page 48

Description

An interface is a kind of classifier that represents a declaration of a set of coherent public features and obligations. An
interface specifies a contract; any instance of a classifier that realizes the interface must fulfill that contract. The
obligations that may be associated with an interface are in the form of various kinds of constraints (such as pre- and post-
conditions) or protocol specifications, which may impose ordering restrictions on interactions through the interface.

Since interfaces are declarations, they are not instantiable. Instead, an interface specification is implemented by an
instance of an instantiable classifier, which means that the instantiable classifier presents a public facade that conforms to
the interface specification. Note that a given classifier may implement more than one interface and that an interface may
be implemented by a number of different classifiers (see “InterfaceRealization (from Interfaces)” on page 85).

Attributes

No additional attributes

Associations

< ownedAttribute: Property References all the properties owned by the Interface. (Subsets
Namespace.ownedMember and Classifier.feature)

e ownedOperation: Operation References all the operations owned by the Interface. (Subsets
Namespace.ownedMember and Classifier.feature)

« nestedClassifier: Classifier (References all the Classifiers owned by the Interface. (Subsets
Namespace.ownedMember)

« redefinedinterface: Interface (References all the Interfaces redefined by this Interface. (Subsets
Element.redefinedElement)

Constraints

[1] The visibility of all features owned by an interface must be public.
self.feature->forAll(f | f.visibility = #public)

Semantics

An interface declares a set of public features and obligations that constitute a coherent service offered by a classifier.
Interfaces provide a way to partition and characterize groups of properties that realizing classifier instances must possess.
An interface does not specify how it is to be implemented, but merely what needs to be supported by realizing instances.
That is, such instances must provide a public facade (attributes, operations, externally observable behavior) that conforms
to the interface. Thus, if an interface declares an attribute, this does not necessarily mean that the realizing instance will
necessarily have such an attribute in its implementation, only that it will appear so to external observers.

Because an interface is merely a declaration it is not an instantiable model element; that is, there are no instances of
interfaces at run time.

82 UML Superstructure Specification, v2.0

The set of interfaces realized by a classifier are its provided interfaces, which represent the obligations that instances of
that classifier have to their clients. They describe the services that the instances of that classifier offer to their clients.
Interfaces may also be used to specify required interfaces, which are specified by a usage dependency between the
classifier and the corresponding interfaces. Required interfaces specify services that a classifier needs in order to perform
its function and fulfill its own obligations to its clients.

Properties owned by interfaces are abstract and imply that the conforming instance should maintain information
corresponding to the type and multiplicity of the property and facilitate retrieval and modification of that information. A
property declared on an Interface does not necessarily imply that there will be such a property on a classifier realizing that
Interface (e.g., it may be realized by equivalent get and set operations). Interfaces may also own constraints that impose
constraints on the features of the implementing classifier.

An association between an interface and any other classifier implies that a conforming association must exist between any
implementation of that interface and that other classifier. In particular, an association between interfaces implies that a
conforming association must exist between implementations of the interfaces.

An interface cannot be directly instantiated. Instantiable classifiers, such as classes, must implement an interface (see
“InterfaceRealization (from Interfaces)”).

Notation
As a classifier, an interface may be shown using a rectangle symbol with the keyword «interface» preceding the name.

The interface realization dependency from a classifier to an interface is shown by representing the interface by a circle or
ball, labeled with the name of the interface, attached by a solid line to the classifier that realizes this interface (see Figure
7.53).

O— ProximitySensor

ISensor

Figure 7.53 - Isensor is the provided interface of ProximitySensor

The usage dependency from a classifier to an interface is shown by representing the interface by a half-circle or socket,
labeled with the name of the interface, attached by a solid line to the classifier that requires this interface (see Figure
7.54).

TheftAlarm

—C

ISensor

Figure 7.54 - Isensor is the required interface of TheftAlarm

Presentation Options

Alternatively, in cases where interfaces are represented using the rectangle notation, interface realization and usage
dependencies are denoted with appropriate dependency arrows (see Figure 7.55). The classifier at the tail of the arrow
implements the interface at the head of the arrow or uses that interface, respectively.

UML Superstructure Specification, v2.0 83

«interface»
ISensor
TheftAlarm ——— > <]— — — —] ProximitySensor

activate()
read()

Figure 7.55 - Alternative notation for the situation depicted in Figure 7.53 and Figure 7.54

A set of interfaces constituting a protocol may be depicted as interfaces with associations between them (see Figure 7.56).

. «interface»
«interface» theAlarm the Sensor 1Sensor
IAlarm
1 1 .
. activate
notify() ol 0

Figure 7.56 - Alarm is the required interface for any classifier implementing Isensor; conversely, Isensor is the required
interface for any classifier implementing IAlarm.

Examples

The following example shows a set of associated interfaces that specify an alarm system. (These interfaces may be
defined independently or as part of a collaboration.) Figure 7.57 shows the specification of three interfaces, 1Alarm,
ISensor, and 1Buzzer. IAlarm and Isensor are shown as engaged in a bidirectional protocol; IBuzzer describes the required
interface for instances of classifiers implementing 1Alarm, as depicted by their respective associations.

«interface»
IBuzzer ; «interface»
theBuzzer “":ﬁgﬁn‘ie» theAlarm the Sensor 1Sensor
Volume) 1 1
: activate()
Start() notify() read()
Reset()

Figure 7.57 - A set of collaborating interfaces.

Three classes: DoorSensor, DoorAlarm, and DoorBell implement the above interfaces (see Figure 7.58). These classifiers
are completely decoupled. Nevertheless, instances of these classifiers are able to interact by virtue of the conforming
associations declared by the associations between the interfaces that they realize.

ﬁ) ISensor ﬁ) IAlarm (% IBuzzer

DoorSensor DoorAlarm DoorBell

Figure 7.58 - Classifiers implementing the above interfaces

84 UML Superstructure Specification, v2.0

7.3.25 InterfaceRealization (from Interfaces)

Generalizations

» “Realization (from Dependencies)” on page 124

Description

An InterfaceRealization is a specialized Realization relationship between a Classifier and an Interface. This relationship
signifies that the realizing classifier conforms to the contract specified by the Interface.

Attributes

No additional attributes

Associations

e contract: Interface [1]
References the Interface specifying the conformance contract. (Specializes Dependency.supplier and Relationship.target).

* implementingClassifier: BehavioredClassifier [1]
References the BehavioredClassifier that owns this Interfacerealization (i.e., the classifier that realizes the Interface to
which it points). (Specializes Dependency.client, Element.owner, and Relationship.source.)

Constraints

No additional constraints

Semantics

A classifier that implements an interface specifies instances that are conforming to the interface and to any of its
ancestors. A classifier may implement a number of interfaces. The set of interfaces implemented by the classifier are its
provided interfaces and signify the set of services the classifier offers to its clients. A classifier implementing an interface
supports the set of features owned by the interface. In addition to supporting the features, a classifier must comply with
the constraints owned by the interface.

An interface realization relationship between a classifier and an interface implies that the classifier supports the set of
features owned by the interface, and any of its parent interfaces. For behavioral features, the implementing classifier will
have an operation or reception for every operation or reception, respectively, defined by the interface. For properties, the
realizing classifier will provide functionality that maintains the state represented by the property. While such may be done
by direct mapping to a property of the realizing classifier, it may also be supported by the state machine of the classifier
or by a pair of operations that support the retrieval of the state information and an operation that changes the state
information.

Notation

See “Interface (from Interfaces).”
7.3.26 LiteralBoolean (from Kernel)

A literal boolean is a specification of a boolean value.

UML Superstructure Specification, v2.0 85

Generalizations

- “LiteralSpecification (from Kernel)” on page 88

Description

A literal boolean contains a Boolean-valued attribute.

Attributes

e value: Boolean The specified Boolean value.

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
LiteralBoolean::isComputable(): Boolean;
isComputable = true

[2] The query booleanValue() gives the value.
LiteralBoolean::booleanValue() : [Boolean];
booleanValue = value

Semantics

A LiteralBoolean specifies a constant Boolean value.

Notation

A LiteralBoolean is shown as either the word ‘true’ or the word “false,” corresponding to its value.
7.3.27 Literalinteger (from Kernel)

A literal integer is a specification of an integer value.

Generalizations

« “LiteralSpecification (from Kernel)” on page 88

Description

A literal integer contains an Integer-valued attribute.

Attributes

e value: Integer The specified Integer value.

86 UML Superstructure Specification, v2.0

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
Literallnteger::isComputable(): Boolean;
isComputable = true

[2] The query integerValue() gives the value.
Literallnteger::integerValue() : [Integer];
integerValue = value

Semantics

A Literallnteger specifies a constant Integer value.

Notation

A Literallnteger is shown as a sequence of digits.
7.3.28 LiteralNull (from Kernel)

A literal null specifies the lack of a value.

Generalizations

 “LiteralSpecification (from Kernel)” on page 88

Description

A literal null is used to represent null (i.e., the absence of a value).

Attributes

No additional attributes

Associations

No additional associations

Constraints
No additional constraints

[1] The query isComputable() is redefined to be true.
LiteralNull::isComputable(): Boolean;
isComputable = true

[2] The query isNull() returns true.

UML Superstructure Specification, v2.0

LiteralNull::isNull() : Boolean;
isNull = true

Semantics

LiteralNull is intended to be used to explicitly model the lack of a value.

Notation

Notation for LiteralNull varies depending on where it is used. It often appears as the word ‘null.” Other notations are
described for specific uses.

7.3.29 LiteralSpecification (from Kernel)
A literal specification identifies a literal constant being modeled.

Generalizations

« “ValueSpecification (from Kernel)” on page 132

Description

A literal specification is an abstract specialization of ValueSpecification that identifies a literal constant being modeled.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

No additional semantics. Subclasses of LiteralSpecification are defined to specify literal values of different types.

Notation

No specific notation
7.3.30 LiteralString (from Kernel)
A literal string is a specification of a string value.

Generalizations

« “LiteralSpecification (from Kernel)” on page 88.

88 UML Superstructure Specification, v2.0

Description

A literal string contains a String-valued attribute.

Attributes

e value: String The specified String value

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
LiteralString::isComputable(): Boolean;
isComputable = true

[2] The query stringValue() gives the value.
LiteralString::stringValue() : [String];
stringValue = value

Semantics

A LiteralString specifies a constant String value.

Notation
A LiteralString is shown as a sequence of characters within double quotes.

The character set used is unspecified.

7.3.31 LiteralUnlimitedNatural (from Kernel)

A literal unlimited natural is a specification of an unlimited natural number.

Generalizations

» “LiteralSpecification (from Kernel)” on page 88

Description

A literal unlimited natural contains an UnlimitedNatural-valued attribute.

Attributes

e value: UnlimitedNatural The specified UnlimitedNatural value.

Associations

No additional associations

UML Superstructure Specification, v2.0

89

Constraints

No additional constraints

Additional Operations

[1] The query isComputable() is redefined to be true.
LiteralUnlimitedNatural::isComputable(): Boolean;
isComputable = true

[2] The query unlimitedValue() gives the value.
LiteralUnlimitedNatural::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = value

Semantics

A LiteralUnlimitedNatural specifies a constant UnlimitedNatural value.

Notation

A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where an asterisk denotes
unlimited (and not infinity).

7.3.32 MultiplicityElement (from Kernel)

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable
cardinalities for an instantiation of this element.

Generalizations

« “Element (from Kernel)” on page 60

Description

A MultiplicityElement is an abstract metaclass that includes optional attributes for defining the bounds of a multiplicity.
A MultiplicityElement also includes specifications of whether the values in an instantiation of this element must be
unique or ordered.

Attributes

e isOrdered : Boolean For a multivalued multiplicity, this attribute specifies whether the values in an
instantiation of this element are sequentially ordered. Default is false.

e isUnique : Boolean For a multivalued multiplicity, this attributes specifies whether the values in an
instantiation of this element are unique. Default is true.

e [lower : Integer [0..1] Specifies the lower bound of the multiplicity interval, if it is expressed as an integer.

e /upper : UnlimitedNatural [0..1] Specifies the upper bound of the multiplicity interval, if it is expressed as an
unlimited natural.

90 UML Superstructure Specification, v2.0

Associations

L]

L]

lowerValue: ValueSpecification [0..1] The specification of the lower bound for this multiplicity. Subsets
Element::ownedElement

upperValue: ValueSpecification [0..1] The specification of the upper bound for this multiplicity. Subsets
Element::ownedElement

Constraints

These constraints must handle situations where the upper bound may be specified by an expression not computable in the
model.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

A multiplicity must define at least one valid cardinality that is greater than zero.
upperBound()->notEmpty() implies upperBound() > 0

The lower bound must be a non-negative integer literal.

lowerBound()->notEmpty() implies lowerBound() >= 0

The upper bound must be greater than or equal to the lower bound.

(upperBound()->notEmpty() and lowerBound()->notEmpty()) implies upperBound() >= lowerBound()

If a non-literal ValueSpecification is used for the lower or upper bound, then evaluating that specification must not have
side effects.

Cannot be expressed in OCL.

If a non-literal ValueSpecification is used for the lower or upper bound, then that specification must be a constant
expression.

Cannot be expressed in OCL.

The derived lower attribute must equal the lowerBound.
lower = lowerBound()

The derived upper attribute must equal the upperBound.
upper = upperBound()

Additional Operations

(1]

[2

(3]

The query isMultivalued() checks whether this multiplicity has an upper bound greater than one.
MultiplicityElement::isMultivalued() : Boolean;

pre: upperBound()->notEmpty()

isMultivalued = (upperBound() > 1)

The query includesCardinality() checks whether the specified cardinality is valid for this multiplicity.
MultiplicityElement::includesCardinality(C : Integer) : Boolean;

pre: upperBound()->notEmpty() and lowerBound()->notEmpty()

includesCardinality = (lowerBound() <= C) and (upperBound() >= C)

The query includesMultiplicity() checks whether this multiplicity includes all the cardinalities allowed by the specified
multiplicity.

MultiplicityElement::includesMultiplicity(M : MultiplicityElement) : Boolean;

pre: self.upperBound()->notEmpty() and self.lowerBound()->notEmpty()
and M.upperBound()->notEmpty() and M.lowerBound()->notEmpty()

includesMultiplicity = (self.lowerBound() <= M.lowerBound()) and (self.upperBound() >= M.upperBound())

UML Superstructure Specification, v2.0 91

[4] The query lowerBound() returns the lower bound of the multiplicity as an integer.
MultiplicityElement::lowerBound() : [Integer];
lowerBound = if lowerValue->isEmpty() then 1 else lowerValue.integerValue() endif
[5] The query upperBound() returns the upper bound of the multiplicity for a bounded multiplicity as an unlimited natural.
MultiplicityElement::upperBound() : [UnlimitedNatural];
upperBound = if upperValue->isEmpty() then 1 else upperValue.unlimitedValue() endif

Semantics

A multiplicity defines a set of integers that define valid cardinalities. Specifically, cardinality C is valid for multiplicity M
if M.includesCardinality(C).

A multiplicity is specified as an interval of integers starting with the lower bound and ending with the (possibly infinite)
upper bound.

If a MultiplicityElement specifies a multivalued multiplicity, then an instantiation of this element has a collection of
values. The multiplicity is a constraint on the number of values that may validly occur in that set.

If the MultiplicityElement is specified as ordered (i.e., isOrdered is true), then the collection of values in an instantiation
of this element is ordered. This ordering implies that there is a mapping from positive integers to the elements of the
collection of values. If a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic effect.

If the MultiplicityElement is specified as unordered (i.e., isOrdered is false), then no assumptions can be made about the
order of the values in an instantiation of this element.

If the MultiplicityElement is specified as unique (i.e., isUnique is true), then the collection of values in an instantiation of
this element must be unique. If a MultiplicityElement is not multivalued, then the value for isUnique has no semantic
effect.

The lower and upper bounds for the multiplicity of a MultiplicityElement may be specified by value specifications, such
as (side-effect free, constant) expressions.

Notation

The specific notation for a MultiplicityElement is defined by the concrete subclasses. In general, the notation will include
a multiplicity specification shown as a text string containing the bounds of the interval, and a notation for showing the
optional ordering and uniqueness specifications.

The multiplicity bounds are typically shown in the format:
<lower-bound> *..” <upper-bound>

where <lower-bound> is an integer and <upper-bound> is an unlimited natural number. The star character (*) is used as
part of a multiplicity specification to represent the unlimited (or infinite) upper bound.

If the Multiplicity is associated with an element whose notation is a text string (such as an attribute, etc.), the multiplicity
string will be placed within square brackets ([]) as part of that text string. Figure 7.59 shows two multiplicity strings as
part of attribute specifications within a class symbol.

If the Multiplicity is associated with an element that appears as a symbol (such as an association end), the multiplicity
string is displayed without square brackets and may be placed near the symbol for the element. Figure 7.60 shows two
multiplicity strings as part of the specification of two association ends.

92 UML Superstructure Specification, v2.0

The specific notation for the ordering and uniqueness specifications may vary depending on the specific subclass of
MultiplicityElement. A general notation is to use a property string containing ordered or unordered to define the ordering,
and unique or non-unique to define the uniqueness.

Presentation Options

If the lower bound is equal to the upper bound, then an alternate notation is to use the string containing just the upper
bound. For example, “1” is semantically equivalent to “1..1.”

A multiplicity with zero as the lower bound and an unspecified upper bound may use the alternative notation containing
a single star “*” instead of “0..*.”

The following BNF defines the syntax for a multiplicity string, including support for the presentation options:
<multiplicity> ::= <multiplicity-range> [‘{* <order-designator> [‘,” <uniqueness-designator>] ‘}’]
<multiplicity-range> ::= [<lower> *..”] <upper>
<lower> ::= <integer> | <value-specification>
<upper> ::= “*’ | <value-specification>
<order-designator> ::= ‘ordered’ | ‘unordered’
<uniqueness-designator> ::= ‘unique’ | ‘nonunique’

Examples

Customer

purchase : Purchase [*] {ordered, unique}
account: Account [0..5] {unique}

Figure 7.59 - Multiplicity within a textual specification

purchase account
Purchase Customer Account
 {ordered, {unique}
unique} 0.5

Figure 7.60 - Multiplicity as an adornment to a symbol
7.3.33 NamedElement (from Kernel, Dependencies)
A named element is an element in a model that may have a name.

Generalizations

« “Element (from Kernel)” on page 60

UML Superstructure Specification, v2.0 93

Description

A named element represents elements that may have a name. The name is used for identification of the named element
within the namespace in which it is defined. A named element also has a qualified name that allows it to be
unambiguously identified within a hierarchy of nested namespaces. NamedElement is an abstract metaclass.

Attributes
e name: String [0..1] The name of the NamedElement.
e/ qualifiedName: String [0..1] A name that allows the NamedElement to be identified within a hierarchy of nested

Namespaces. It is constructed from the names of the containing namespaces starting
at the root of the hierarchy and ending with the name of the NamedElement itself.
This is a derived attribute.

visibility: VisibilityKind [0..1] Determines the visibility of the NamedElement within different Namespaces within
the overall model.

Package Dependencies

supplierDependency: Dependency [*] Indicates the dependencies that reference the supplier.

clientDependency: Dependency[*] Indicates the dependencies that reference the client.

Associations

/ namespace: Namespace [0..1] Specifies the namespace that owns the NamedElement. Subsets Element::owner.
This is a derived union.

Constraints

[1]

(2]

3]

If there is no name, or one of the containing namespaces has no name, there is no qualified name.
(self.name->isEmpty() or self.allNamespaces()->select(ns | ns.name->isEmpty())->notEmpty())
implies self.qualifiedName->isEmpty()
When there is a name, and all of the containing namespaces have a name, the qualified name is constructed from the
names of the containing namespaces.
(self.name->notEmpty() and self.allNamespaces()->select(ns | ns.name->isEmpty())->isEmpty()) implies
self.qualifiedName = self.allNamespaces()->iterate(ns : Namespace; result: String = self.name |
ns.name->union(self.separator())->union(result))
If a NamedElement is not owned by a Namespace, it does not have a visibility.
namespace->isEmpty() implies visibility->isEmpty()

Additional Operations

[1]

94

The query allNamespaces() gives the sequence of namespaces in which the NamedElement is nested, working outwards.
NamedElement::allNamespaces(): Sequence(Namespace);
allNamespaces =
if self.namespace->isEmpty()
then Sequence{}
else self.namespace.allNamespaces()->prepend(self.namespace)
endif

UML Superstructure Specification, v2.0

[2] The query isDistinguishableFrom() determines whether two NamedElements may logically co-exist within a Namespace.
By default, two named elements are distinguishable if (a) they have unrelated types or (b) they have related types but
different names.

NamedElement::isDistinguishableFrom(n:NamedElement, ns: Namespace): Boolean;
isDistinguishable =
if self.oclisKindOf(n.oclType) or n.oclisKindOf(self.oclType)
then ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->isEmpty()
else true
endif
[3] The query separator() gives the string that is used to separate names when constructing a qualified name.
NamedElement::separator(): String;
separator = i\’

Semantics

The name attribute is used for identification of the named element within namespaces where its name is accessible. Note
that the attribute has a multiplicity of [0..1] that provides for the possibility of the absence of a name (which is different
from the empty name).

The visibility attribute provides the means to constrain the usage of a named element in different namespaces within a
model. It is intended for use in conjunction with import and generalization mechanisms.

Notation

No additional notation
7.3.34 Namespace (from Kernel)
A namespace is an element in a model that contains a set of named elements that can be identified by name.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 93.

Description

A namespace is a named element that can own other named elements. Each named element may be owned by at most one
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified
by name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by
other means (e.g., importing or inheriting). Namespace is an abstract metaclass.

A namespace can own constraints. The constraint does not necessarily apply to the namespace itself, but may instead
apply to elements in the namespace.

A namespace has the ability to import either individual members or all members of a package, thereby making it possible
to refer to those named elements without qualification in the importing namespace. In the case of conflicts, it is necessary
to use qualified names or aliases to disambiguate the referenced elements.

Attributes
No additional attributes

UML Superstructure Specification, v2.0 95

Associations
* elementimport: Elementimport [*]

e |/ importedMember: PackageableElement [*]

e/ member: NamedElement [*]

e/ ownedMember: NamedElement [*]

e ownedRule: Constraint[*]

» packagelmport: Packagelmport [*]

Constraints

References the Elementimports owned by the Namespace. Subsets
Element::ownedElement

References the PackageableElements that are members of this
Namespace as a result of either Packagelmports or Elementimports.
Subsets Namespace::member

A collection of NamedElements identifiable within the Namespace,
either by being owned or by being introduced by importing or
inheritance. This is a derived union.

A collection of NamedElements owned by the Namespace. Subsets
Element::ownedElement and Namespace::member. This is a derived
union.

Specifies a set of Constraints owned by this Namespace. Subsets
Namespace::ownedMember

References the Packagelmports owned by the Namespace. Subsets
Element::ownedElement

[1] All the members of a Namespace are distinguishable within it.

membersAreDistinguishable()

[2] The importedMember property is derived from the Elementimports and the Packagelmports.

elf.elementimport.importedElement.asSet()->union(self.packagelmport.importedPackage->collect(p |

p.visibleMembers()))))

Additional Operations

[1] The query getNamesOfMember() gives a set of all of the names that a member would have in a Namespace. In general a
member can have multiple names in a Namespace if it is imported more than once with different aliases. The query takes
account of importing. It gives back the set of names that an element would have in an importing namespace, either
because it is owned; or if not owned, then imported individually; or if not individually, then from a package.

Namespace::getNamesOfMember(element: NamedElement): Set(String);

getNamesOfMember =

if self.ownedMember ->includes(element)

then Set{}->include(element.name)

else let elementimports: Elementimport = self.elementimport->select(ei | ei.importedElement = element) in

if elementimports->notEmpty()

then elementimports->collect(el | el.getName())

else

self.packagelmport->select(pi | pi.importedPackage.visibleMembers()->includes(element))->
collect(pi | pi.importedPackage.getNamesOfMember(element))

endif
endif

[2] The Boolean query membersAreDistinguishable() determines whether all of the namespace’s members are

distinguishable within it.

96

UML Superstructure Specification, v2.0

Namespace::membersAreDistinguishable() : Boolean;
membersAreDistinguishable =
self.member->forAll(memb |
self. member->excluding(memb)->forAll(other |
memb.isDistinguishableFrom(other, self)))
[3] The query importMembers() defines which of a set of PackageableElements are actually imported into the namespace.

This excludes hidden ones, i.e., those that have names that conflict with names of owned members, and also excludes
elements that would have the same name when imported.

Namespace::importMembers(imps: Set(PackageableElement)): Set(PackageableElement);

importMembers = self.excludeCollisions(imps)->select(imp | self.ownedMember->forAll(mem |
mem.imp.isDistinguishableFrom(mem, self)))

[4] The query excludeCollisions() excludes from a set of PackageableElements any that would not be distinguishable from
each other in this namespace.

Namespace::excludeCollisions(imps: Set(PackageableElements)): Set(PackageableElements);
excludeCollisions = imps->reject(impl | imps.exists(imp2 | not impl.isDistinguishableFrom(imp2, self)))

Semantics

A namespace provides a container for named elements. It provides a means for resolving composite names, such as
namel::name2::name3. The member association identifies all named elements in a namespace called N that can be
referred to by a composite name of the form N::<x>. Note that this is different from all of the names that can be referred
to unqualified within N, because that set also includes all unhidden members of enclosing namespaces.

Named elements may appear within a namespace according to rules that specify how one named element is
distinguishable from another. The default rule is that two elements are distinguishable if they have unrelated types, or
related types but different names. This rule may be overridden for particular cases, such as operations that are
distinguished by their signature.

The ownedRule constraints for a Namespace represent well formedness rules for the constrained elements. These
constraints are evaluated when determining if the model elements are well formed.

Notation

No additional notation. Concrete subclasses will define their own specific notation.
7.3.35 OpaqueExpression (from Kernel)

An opaque expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated
in a context.

Generalizations

« “ValueSpecification (from Kernel)” on page 132

Description

An expression contains language-specific text strings used to describe a value or values, and an optional specification of
the languages.

One predefined language for specifying expressions is OCL. Natural language or programming languages may also be
used.

UML Superstructure Specification, v2.0 97

Attributes
e body: String [1..*] The text of the expression, possibly in multiple languages.

« language: String [0..*] Specifies the languages in which the expression is stated. The interpretation of the expression
body depends on the languages. If the languages are unspecified, they might be implicit from
the expression body or the context. Languages are matched to body strings by order.

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

These operations are not defined within the specification of UML. They should be defined within an implementation that

implements constraints so that constraints that use these operations can be evaluated.

[1] The query value() gives an integer value for an expression intended to produce one.
Expression::value(): Integer;
pre: self.isintegral()

[2] The query isintegral() tells whether an expression is intended to produce an integer.
Expression::isintegral(): Boolean;

[3] The query isPositive() tells whether an integer expression has a positive value.
Expression::isPositive(): Boolean;
pre: self.isintegral()

[4] The query isNonNegative() tells whether an integer expression has a non-negative value.
Expression::isNonNegative(): Boolean;
pre: self.isintegral()

Semantics

The interpretation of the expression body depends on the languages. Languages are matched to body strings by order. If
the languages are unspecified, they might be implicit from the expression bodies or the context.

It is assumed that a linguistic analyzer for the specified languages will evaluate the bodies. The times at which the bodies
will be evaluated are not specified.

Notation

An opaque expression is displayed as text strings in particular languages. The syntax of the strings are the responsibility
of a tool and linguistic analyzers for the languages.

An opaque expression is displayed as a part of the notation for its containing element.

The languages of an opaque expression, if specified, is often not shown on a diagram. Some modeling tools may impose
a particular language or assume a particular default language. The language is often implicit under the assumption that the
form of the expression makes its purpose clear. If the language name is shown, it should be displayed in braces ({})
before the expression string to which it corresponds.

98 UML Superstructure Specification, v2.0

Style Guidelines

A language name should be spelled and capitalized exactly as it appears in the document defining the language. For
example, use OCL, not ocl.

Examples

a>0
{OCL}i>jand self.size > i
average hours worked per week

7.3.36 Operation (from Kernel, Interfaces)

An operation is a behavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking
an associated behavior.

Generalizations

» “BehavioralFeature (from Kernel)” on page 44

Description

An operation is a behavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking
an associated behavior.

Attributes

e [isOrdered : Boolean Specifies whether the return parameter is ordered or not, if present. This is derived.

e isQuery : Boolean Specifies whether an execution of the BehavioralFeature leaves the state of the system
unchanged (isQuery=true) or whether side effects may occur (isQuery=false). The default
value is false.

e [isUnique : Boolean Specifies whether the return parameter is unique or not, if present. This is derived.

e /lower : Integer[0..1] Specifies the lower multiplicity of the return parameter, if present. This is derived.

e Jupper : UnlimitedNatural[0..1] Specifies the upper multiplicity of the return parameter, if present. This is derived.

Associations

e class: Class [0..1] The class that owns this operation. Subsets
RedefinableElement::redefinitionContext, NamedElement::namespace and
Feature::featuringClassifier

e bodyCondition: Constraint[0..1] An optional Constraint on the result values of an invocation of this Operation.
Subsets Namespace::ownedRule

e ownedParameter: Parameter[*] Specifies the parameters owned by this Operation. Redefines
BehavioralFeature::ownedParameter.

e postcondition: Constraint[*] An optional set of Constraints specifying the state of the system when the
Operation is completed. Subsets Namespace::ownedRule.

e precondition: Constraint[*] An optional set of Constraints on the state of the system when the Operation is
invoked. Subsets Namespace::ownedRule

UML Superstructure Specification, v2.0 99

raisedException: Type[*] References the Types representing exceptions that may be raised during an
invocation of this operation. Redefines Basic::Operation.raisedException and
BehavioralFeature.raisedException.

redefinedOperation: Operation[*] References the Operations that are redefined by this Operation. Subsets
RedefinableElement.redefinedElement

Itype: Type[0..1] Specifies the return result of the operation, if present. This is a derived value.

Package Interfaces

interface: Interface [0..1] The Interface that owns this Operation. (Subsets
RedefinableElement::redefinitionContext, NamedElement::namespace and
Feature::featuringClassifier)

Constraints

[1]

[2]

(3]

[4]

[5]

6]

[7]

An operation can have at most one return parameter (i.e., an owned parameter with the direction set to ‘return’).
ownedParameter->select(par | par.direction = #return)->size() <= 1

If this operation has a return parameter, isOrdered equals the value of isOrdered for that parameter. Otherwise isOrdered is
false.

isOrdered = if returnResult()->notEmpty() then returnResult()->any().isOrdered else false endif

If this operation has a return parameter, isUnique equals the value of isUnique for that parameter. Otherwise isUnique is
true.

isUnique = if returnResult()->notEmpty() then returnResult()->any().isUnique else true endif

If this operation has a return parameter, lower equals the value of lower for that parameter. Otherwise lower is not defined.
lower = if returnResult()->notEmpty() then returnResult()->any().lower else Set{} endif

If this operation has a return parameter, upper equals the value of upper for that parameter. Otherwise upper is not defined.
upper = if returnResult()->notEmpty() then returnResult()->any().upper else Set{} endif

If this operation has a return parameter, type equals the value of type for that parameter. Otherwise type is not defined.
type = if returnResult()->notEmpty() then returnResult()->any().type else Set{} endif

A bodyCondition can only be specified for a query operation.

bodyCondition->notEmpty() implies isQuery

Additional Operations

[1]

100

The query isConsistentWith() specifies, for any two Operations in a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining operation is consistent with a redefined operation if it has the
same number of owned parameters, and the type of each owned parameter conforms to the type of the corresponding

redefined parameter.

A redefining operation is consistent with a redefined operation if it has the same number of formal parameters, the same
number of return results, and the type of each formal parameter and return result conforms to the type of the
corresponding redefined parameter or return result.
Operation::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = (redefinee.ocllsKindOf(Operation) and

let op: Operation = redefinee.oclAsType(Operation) in

self.ownedParameter.size() = op.ownedParameter.size() and

UML Superstructure Specification, v2.0

forAll(i | op.ownedParameter[i].type.conformsTo(self.ownedParameter[i].type))

)

[2] The query returnResult() returns the set containing the return parameter of the Operation if one exists, otherwise, it returns
an empty set.

Operation::returnResult() : Set(Parameter);
returnResult = ownedParameter->select (par | par.direction = #return)

Semantics
An operation is invoked on an instance of the classifier for which the operation is a feature.

The preconditions for an operation define conditions that must be true when the operation is invoked. These preconditions
may be assumed by an implementation of this operation.

The postconditions for an operation define conditions that will be true when the invocation of the operation completes
successfully, assuming the preconditions were satisfied. These postconditions must be satisfied by any implementation of
the operation.

The bodyCondition for an operation constrains the return result. The bodyCondition differs from postconditions in that
the bodyCondition may be overridden when an operation is redefined, whereas postconditions can only be added during
redefinition.

An operation may raise an exception during its invocation. When an exception is raised, it should not be assumed that the
postconditions or bodyCondition of the operation are satisfied.

An operation may be redefined in a specialization of the featured classifier. This redefinition may specialize the types of
the owned parameters, add new preconditions or postconditions, add new raised exceptions, or otherwise refine the
specification of the operation.

Each operation states whether or not its application will modify the state of the instance or any other element in the model
(isQuery).

An operation may be owned by and in the namespace of a class that provides the context for its possible redefinition.

Semantic Variation Points

The behavior of an invocation of an operation when a precondition is not satisfied is a semantic variation point. When
operations are redefined in a specialization, rules regarding invariance, covariance, or contravariance of types and
preconditions determine whether the specialized classifier is substitutable for its more general parent. Such rules
constitute semantic variation points with respect to redefinition of operations.

Notation
An operation is shown as a text string of the form:
[<visibility>] <name> ‘(* [<parameter-list>] *)’ [*:” [<return-type>] ‘{* <oper-property> [‘,” <oper-property>]* ‘}’]
where:
« <visibility> is the visibility of the operation (See “VisibilityKind (from Kernel)” on page 133).
<visibility> 1= *+" | *-* | "#" | *~’

» <name> is the name of the operation.

UML Superstructure Specification, v2.0 101

« <return-type> is the type of the return result parameter if the operation has one defined.

 <oper-property> indicates the properties of the operation.
<oper-property> ::= ‘redefines’ <oper-name> | ‘query’ | ‘ordered’ | ‘unique’ | <oper-constraint>

where:
« redefines <oper-name> means that the operation redefines an inherited operation identified by <oper-name>.
« query means that the operation does not change the state of the system.
« ordered means that the values of the return parameter are ordered.
« unique means that the values returned by the parameter have no duplicates.
« <oper-constraint> is a constraint that applies to the operation.
» <parameter-list> is a list of parameters of the operation in the following format:
<parameter-list> ::= <parameter> [‘,’<parameter>]*

<parameter> ::= [<direction>] <parameter-name> *:’ <type-expression>
[‘[‘<multiplicity>"]"] ['=" <default>] [*{* <parm-property> [‘,” <parm-property>]* ‘}’]

where:
e <direction> ::= ‘in’ | “out’ | ‘inout’ (defaults to “in’ if omitted).
 <parameter-name> is the name of the parameter.
* <type-expression> is an expression that specifies the type of the parameter.
« <multiplicity> is the multiplicity of the parameter. (See “MultiplicityElement (from Kernel)” on page 90).
« <default> is an expression that defines the value specification for the default value of the parameter.
» <parm-property> indicates additional property values that apply to the parameter.

Presentation Options

The parameter list can be suppressed. The return result of the operation can be expressed as a return parameter, or as the
type of the operation. For example:

toString(return : String)

means the same thing as
toString() : String

Style Guidelines

An operation name typically begins with a lowercase letter.

Examples
display ()
-hide ()
+createWindow (location: Coordinates, container: Container [0..1]): Window

+toString (): String

102 UML Superstructure Specification, v2.0

7.3.37 Package (from Kernel)
A package is used to group elements, and provides a namespace for the grouped elements.

Generalizations
» “Namespace (from Kernel)” on page 95

» “PackageableElement (from Kernel)” on page 105

Description

A package is a namespace for its members, and may contain other packages. Only packageable elements can be owned
members of a package. By virtue of being a namespace, a package can import either individual members of other
packages, or all the members of other packages.

In addition a package can be merged with other packages.

Attributes

No additional attributes

Associations

« [nestedPackage: Package [*] References the owned members that are Packages. Subsets
Package::ownedMember

« ownedMember: PackageableElement [*] Specifies the members that are owned by this Package. Redefines
Namespace: :ownedMember.

« ownedType: Type [*] References the owned members that are Types. Subsets
Package::ownedMember

e package: Package [0..1] References the owning package of a package. Subsets
NamedElement::namespace

e packageMerge: Package [*] References the PackageMerges that are owned by this Package. Subsets
Element::ownedElement

e nestingPackage: Package [0..1] References the Package that owns this Package. Subsets
NamedElement::namespace

Constraints

[1] If an element that is owned by a package has visibility, it is public or private.
self.ownedElements->forAll(e | e.visibility->notEmpty() implies e.visbility = #public or e.visibility = #private)

Additional Operations

[1] The query mustBeOwned() indicates whether elements of this type must have an owner.
Package::mustBeOwned() : Boolean
mustBeOwned = false

[2] The query visibleMembers() defines which members of a Package can be accessed outside it.
Package::visibleMembers() : Set(PackageableElement);
visibleMembers = member->select(m | self.makesVisible(m))

UML Superstructure Specification, v2.0 103

[3] The query makesVisible() defines whether a Package makes an element visible outside itself. Elements with no visibility
and elements with public visibility are made visible.

Package::makesVisible(el: Namespaces::NamedElement) : Boolean;
pre: self.member->includes(el)

makesVisible =
-- case: the element is in the package itself

(ownedMember->includes(el)) or

-- case: it is imported individually with public visibility

(elementimport->select(ei|ei.importedElement = #public)->collect(ei|ei.importedElement)->includes(el)) or

-- case: it is imported in a package with public visibility

(packagelmport->select(pi|pi.visibility = #public)->collect(pi|pi.importedPackage.member->includes(el))->notEmpty())

Semantics
A package is a namespace and is also a packageable element that can be contained in other packages.

The elements that can be referred to using non-qualified names within a package are owned elements, imported elements,
and elements in enclosing (outer) namespaces. Owned and imported elements may each have a visibility that determines
whether they are available outside the package.

A package owns its owned members, with the implication that if a package is removed from a model, so are the elements
owned by the package.

The public contents of a package are always accessible outside the package through the use of qualified names.

Notation

A package is shown as a large rectangle with a small rectangle (a “tab™) attached to the left side of the top of the large
rectangle. The members of the package may be shown within the large rectangle. Members may also be shown by
branching lines to member elements, drawn outside the package. A plus sign (+) within a circle is drawn at the end
attached to the namespace (package).

- If the members of the package are not shown within the large rectangle, then the name of the package should be placed
within the large rectangle.

- If the members of the package are shown within the large rectangle, then the name of the package should be placed
within the tab.

The visibility of a package element may be indicated by preceding the name of the element by a visibility symbol (‘+” for
public and ‘-’ for private). Package elements with defined visibility may not have protected or package visibility.

Presentation Options

A tool may show visibility by a graphic marker, such as color or font. A tool may also show visibility by selectively
displaying those elements that meet a given visibility level (e.g., only public elements). A diagram showing a package
with contents must not necessarily show all its contents; it may show a subset of the contained elements according to
some criterion.

Elements that become available for use in an importing package through a package import or an element import may have
a distinct color or be dimmed to indicate that they cannot be modified.

104 UML Superstructure Specification, v2.0

Examples

There are three representations of the same package Types in Figure 7.61. The one on the left just shows the package
without revealing any of its members. The middle one shows some of the members within the borders of the package, and

the one to the right shows some of the members using the alternative membership notation.

Types

Types

Integer

Time

Figure 7.61 - Examples of a package with members
7.3.38 PackageableElement (from Kernel)

A packageable element indicates a named element that may be owned directly by a package.

Generalizations

Types

Shape

Point

« “NamedElement (from Kernel, Dependencies)” on page 93

Description

A packageable element indicates a named element that may be owned directly by a package.

Attributes

« visibility: VisibilityKind [1]

Associations

No additional associations

Constraints

No additional constraints

Semantics

No additional semantics

Notation

No additional notation

UML Superstructure Specification, v2.0

Indicates that packageable elements must always have a visibility (i.e., visibility is

not optional). Redefines NamedElement::visibility.

105

7.3.39 Packagelmport (from Kernel)

A package import is a relationship that allows the use of unqualified names to refer to package members from other
namespaces.

Generalizations

« “DirectedRelationship (from Kernel)” on page 59

Description

A package import is defined as a directed relationship that identifies a package whose members are to be imported by a
namespace.

Attributes

« visibility: VisibilityKind Specifies the visibility of the imported PackageableElements within the importing
Namespace, i.e., whether imported elements will in turn be visible to other packages that
use that importingPackage as an importedPackage. If the Packagelmport is public, the
imported elements will be visible outside the package, while if it is private they will not.
By default, the value of visibility is public.

Associations

e importedPackage: Package [1] Specifies the Package whose members are imported into a Namespace. Subsets
DirectedRelationship::target

e importingNamespace: Namespace [1] Specifies the Namespace that imports the members from a Package. Subsets
DirectedRelationship::source and Element::owner
Constraints
[1] The visibility of a Packagelmport is either public or private.
self.visibility = #public or self.visibility = #private
Semantics

A package import is a relationship between an importing namespace and a package, indicating that the importing
namespace adds the names of the members of the package to its own namespace. Conceptually, a package import is
equivalent to having an element import to each individual member of the imported namespace, unless there is already a
separately-defined element import.

Notation

A package import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
package. A keyword is shown near the dashed arrow to identify which kind of package import is intended. The predefined
keywords are «import» for a public package import, and «access» for a private package import.

Presentation options

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identifies
the imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

*{import * <qualified-name> ‘}’ | *{access * <qualified-name> ‘}’

106 UML Superstructure Specification, v2.0

Examples

In Figure 7.62, a number of package imports are shown. The elements in Types are imported to ShoppingCart, and then
further imported to WebShop. However, the elements of Auxiliary are only accessed from ShoppingCart, and cannot be
referenced using unqualified names from WebShop.

1
Auxiliary
§'\\ «access»
\‘\\\ —
— e ShoppingCart S —
Types é’/«’ir;port» «import>""| - \WebShop

Figure 7.62 - Examples of public and private package imports
7.3.40 PackageMerge (from Kernel)
A package merge defines how the contents of one package are extended by the contents of another package.

Generalizations

» “DirectedRelationship (from Kernel)” on page 59

Description

A package merge is a directed relationship between two packages that indicates that the contents of the two packages are
to be combined. It is very similar to Generalization in the sense that the source element conceptually adds the
characteristics of the target element to its own characteristics resulting in an element that combines the characteristics of
both.

This mechanism should be used when elements defined in different packages have the same name and are intended to
represent the same concept. Most often it is used to provide different definitions of a given concept for different purposes,
starting from a common base definition. A given base concept is extended in increments, with each increment defined in
a separate merged package. By selecting which increments to merge, it is possible to obtain a custom definition of a
concept for a specific end. Package merge is particularly useful in meta-modeling and is extensively used in the definition
of the UML metamodel.

Conceptually, a package merge can be viewed as an operation that takes the contents of two packages and produces a new
package that combines the contents of the packages involved in the merge. In terms of model semantics, there is no
difference between a model with explicit package merges, and a model in which all the merges have been performed.

Attributes

No additional attributes

Associations

* mergedPackage: Package [1] References the Package that is to be merged with the receiving package of the
PackageMerge. Subsets DirectedRelationship::target

UML Superstructure Specification, v2.0 107

« receivingPackage: Package [1] References the Package that is being extended with the contents of the merged
package of the PackageMerge. Subsets Element::owner and
DirectedRelationship::source

Constraints

No additional constraints

Semantics

A package merge between two packages implies a set of transformations, whereby the contents of the package to be
merged are combined with the contents of the receiving package. In cases in which certain elements in the two packages
represent the same entity, their contents are (conceptually) merged into a single resulting element according to the formal
rules of package merge specified below.

As with Generalization, a package merge between two packages in a model merely implies these transformations, but the
results are not themselves included in the model. Nevertheless, the receiving package and its contents are deemed to
represent the result of the merge, in the same way that a subclass of a class represents the aggregation of features of all of
its superclasses (and not merely the increment added by the class). Thus, within a model, any reference to a model
element contained in the receiving package implies a reference to the results of the merge rather than to the increment that
is physically contained in that package. This is illustrated by the example in Figure 7.63 in which package P1 and package
P2 both define different increments of the same class A (identified as P1::A and P2::A respectively). Package P2 merges
the contents of package P1, which implies the merging of increment P1::A into increment P2::A. Package P3 imports the
contents of P2 so that it can define a subclass of A called SubA. In this case, element A in package P3 (P3::A) represents
the result of the merge of P1::A into P2::A and not just the increment P2::A. Note that if another package were to import
P1, then a reference to A in the importing package would represent the increment P1::A rather than the A resulting from
merge.

P1 P2 P3

«merge» «import»
A A <S--mmmm A —— SubA

Figure 7.63 - lllustration of the meaning of package merge

To understand the rules of package merge, it is necessary to clearly distinguish between three distinct entities: the merged
increment (e.g., P1::A in Figure 7.63), the receiving increment (e.g., P2::A), and the result of the merge transformations.
The main difficulty comes from the fact that the receiving package and its contents represents both the operand and the
results of the package merge, depending on the context in which they are considered. For example, in Figure 7.63, with
respect to the package merge operation, P2 represents the increment that is an operand for the merge. However, with
respect to the import operation, P2 represents the result of the merge. This dual interpretation of the same model element
can be confusing, so it is useful to introduce the following terminology that aids understanding:

« merged package - the first operand of the merge, that is, the package that is to be merged into the receiving package (this
is the package that is the target of the merge arrow in the diagrams).

108 UML Superstructure Specification, v2.0

e receiving package - the second operand of the merge, that is, the package that, conceptually, contains the results of the
merge (and which is the source of the merge arrow in the diagrams). However, this term is used to refer to the package and
its contents before the merge transformations have been performed.

e resulting package - the package that, conceptually, contains the results of the merge. In the model, this is, of course, the
same package as the receiving package, but this particular term is used to refer to the package and its contents after the
merge has been performed.

« merged element - refers to a model element that exists in the merged package.

e receiving element - is a model element in the receiving package. If the element has a matching merged element, the two
are combined to produce the resulting element (see below). This term is used to refer to the element before the merge has
been performed (i.e., the increment itself rather than the result).

e resulting element - is a model element in the resulting package after the merge was performed. For receiving elements that
have a matching merged element, this is the same element as the receiving element, but in the state after the merge was
performed. For merged elements that have no matching receiving element, this is the merged element. For receiving
elements that have no matching merged element, this is the same as the receiving element.

« element type - refers to the type of any kind of TypedElement, such as the type of a Parameter or StructuralFeature.

¢ element metatype - is the MOF type of a model element (e.g., Classifier, Association, Feature).

This terminology is based on a conceptual view of package merge that is represented by the schematic diagram in Figure
7.64 (NB: this is not a UML diagram). The owned elements of packages A and B are all incorporated into the namespace
of package B. However, it is important to emphasize that this view is merely a convenience for describing the semantics
of package merge and is not reflected in the repository model, that is, the physical model itself is not transformed in any
way by the presence of package merges.

merged receiving
package package

A A B
4\ A KA
| N N /,/ /
|
| /
| package /
|
«merge» | merge /«becomes»
|
| .
|)
i Mresing | 1/
| | package | * l;
| |
B | B' |
| |
L J

Figure 7.64 - Conceptual view of the package merge semantics

The semantics of package merge are defined by a set of constraints and transformations. The constraints specify the

preconditions for a valid package merge, while the transformations describe its semantic effects (i.e., postconditions). If
any constraints are violated, the package merge is ill formed and the resulting model that contains it is invalid. Different
metatypes have different semantics, but the general principle is always the same: a resulting element will not be any less
capable than it was prior to the merge. This means, for instance, that the resulting navigability, multiplicity, visibility, etc.

UML Superstructure Specification, v2.0 109

of a receiving model element will not be reduced as a result of a package merge. One of the key consequences of this is
that model elements in the resulting package are compatible extensions of the corresponding elements in the (unmerged)
receiving package in the same namespace. This capability is particularly useful in defining metamodel compliance levels
such that each successive level is compatible with the previous level, including their corresponding XMI representations.

In this specification, explicit merge transformations are only defined for certain general metatypes found mostly in
metamodels (Packages, Classes, Associations, Properties, etc.), since the semantics of merging other kinds of metatypes
(e.g., state machines, interactions) are complex and domain specific. Elements of all other kinds of metatypes are
transformed according to the default rule: they are simply deep copied into the resulting package. (This rule can be
superseded for specific metatypes through profiles or other kinds of language extensions.)

General package merge rules
A merged element and a receiving element match if they satisfy the matching rules for their metatype.
CONSTRAINTS:

1. There can be no cycles in the «<merge» dependency graph.

2. A package cannot merge a package in which it is contained.

3. A package cannot merge a package that it contains.

4. A merged element whose metatype is not a kind of Package, Class, DataType, Property, Association, Operation,
Constraint, Enumeration, or EnumerationL.iteral, cannot have a receiving element with the same name and metatype
unless that receiving element is an exact copy of the merged element (i.e., they are the same).

5. A package merge is valid if and only if all the constraints required to perform the merge are satisfied.

6. Matching typed elements (e.g., Properties, Parameters) must have conforming types. For types that are classes or data
types, a conforming type is either the same type or a common supertype. For all other cases, conformance means that
the types must be the same.

7. Areceiving element cannot have explicit references to any merged element.
TRANSFORMATIONS:

1. (The default rule) Merged or receiving elements for which there is no matching element are deep copied into the
resulting package.

2. The result of merging two elements with matching names and metatypes that are exact copies of each other is the
receiving element.

3. Matching elements are combined according to the transformation rules specific to their metatype and the results
included in the resulting package.

4. All type references to typed elements that end up in the resulting package are transformed into references to the
corresponding resulting typed elements (i.e., not to their respective increments).

5. For all matching elements: if both matching elements have private visibility, the resulting element will have private
visibility, otherwise, the resulting element will have public visibility.

6. For all matching classifier elements: if both matching elements are abstract, the resulting element is abstract,
otherwise, the resulting element is non-abstract.

110 UML Superstructure Specification, v2.0

7. For all matching elements: if both matching elements are not derived, the resulting element is also not derived,
otherwise, the resulting element is derived.

8. For all matching multiplicity elements: the lower bound of the resulting multiplicity is the lesser of the lower bounds
of the multiplicities of the matching elements.

9. For all matching multiplicity elements: the upper bound of the resulting multiplicity is the greater of the upper bounds
of the multiplicities of the matching elements.

10. Any stereotypes applied to a model element in either a merged or receiving element are also applied to the
corresponding resulting element.

Package rules

Elements that are a kind of Package match by name and metatype (e.g., profiles match with profiles and regular packages
with regular packages).

TRANSFORMATIONS:

1. A nested package from the merged package is transformed into a nested package with the same name in the resulting
package, unless the receiving package already contains a matching nested package. In the latter case, the merged
nested package is recursively merged with the matching receiving nested package.

2. Anelement import owned by the receiving package is transformed into a corresponding element import in the
resulting package. Imported elements are not merged (unless there is also a package merge to the package owning the
imported element or its alias).

Class and DataType rules

Elements that are kinds of Class or DataType match by name and metatype.
TRANSFORMATIONS:

1. All properties from the merged classifier are merged with the receiving classifier to produce the resulting classifier
according to the property transformation rules specified below.

2. Nested classifiers are merged recursively according to the same rules.

Property rules
Elements that are kinds of Property match by name and metatype.
CONSTRAINTS:
1. The static (or non-static) characteristic of matching properties must be the same.
The uniqueness characteristic of matching properties must be the same.

Any constraints associated with matching properties must not be conflicting.

> wo N

Any redefinitions associated with matching properties must not be conflicting.
TRANSFORMATIONS:

1. For merged properties that do not have a matching receiving property, the resulting property is a newly created
property in the resulting classifier that is the same as the merged property.

UML Superstructure Specification, v2.0 111

2. For merged properties that have a matching receiving property, the resulting property is a property with the same
name and characteristics except where these characteristics are different. Where these characteristics are different, the
resulting property characteristics are determined by application of the appropriate transformation rules.

3. For matching properties: if both properties are designated read-only, the resulting property is also designated read-
only. Otherwise, the resulting property is designated as not read-only.

4. For matching properties: if both properties are unordered, then the resulting property is also unordered. Otherwise,
the resulting property is ordered.

5. For matching properties: if neither property is designated as a subset of some derived union, then the resulting
property will not be designated as a subset. Otherwise, the resulting property will be designated as a subset of that
derived union.

6. For matching properties: different redefinitions of matching properties are combined conjunctively.
7. For matching properties: different constraints of matching properties are combined conjunctively.

8. For matching properties: if either the merged and/or receiving elements are non-unique, the resulting element is non-
unique. Otherwise, the resulting element is designated as unique.

9. The resulting property type is transformed to refer to the corresponding type in the resulting package.

Association rules

Elements that are a kind of Association match by name (including if they have no name) and by their association ends where
those match by name and type (i.e., the same rule as properties). These rules are in addition to regular property rules described
above.

CONSTRAINTS:
1. These rules only apply to binary associations. (The default rule is used for merging n-ary associations.)
2. The receiving association end must be a composite if the matching merged association end is a composite.

3. The receiving association end must be owned by the association if the matching merged association end is owned by
the association.

TRANSFORMATIONS:

1. A merge of matching associations is accomplished by merging the Association classifiers (using the merge rules for
classifiers) and merging their corresponding owned end properties according to the rules for properties and
association ends.

2. For matching association ends: if neither association end is navigable, then the resulting association end is also not
navigable. In all other cases, the resulting association end is navigable.

Operation rules

Elements that are a kind of Operation match by name, parameter order, and parameter types, not including any return type.
CONSTRAINTS:

1. Operation parameters and types must conform to the same rules for type and multiplicity as were defined for
properties.

112 UML Superstructure Specification, v2.0

2. The receiving operation must be a query if the matching merged operation is a query.
TRANSFORMATIONS:

1. For merged operations that do not have a matching receiving operation, the resulting operation is an operation with
the same name and signature in the resulting classifier.

2. For merged operations that have a matching receiving operation, the resulting operation is the outcome of a merge of
the matching merged and receiving operations, with parameter transformations performed according to the property
transformations defined above.

Enumeration rules
Elements that are a kind of EnumerationL.iteral match by owning enumeration and literal name.
CONSTRAINTS:
1. Matching enumeration literals must be in the same order.
TRANSFORMATIONS:

1. Non-matching enumeration literals from the merged enumeration are concatenated to the receiving enumeration.

Constraint Rules
CONSTRAINTS:

1. Constraints must be mutually non-contradictory.
TRANSFORMATIONS:

1. The constraints of the merged model elements are conjunctively added to the constraints of the matching receiving
model elements.

Notation

A PackageMerge is shown using a dashed line with an open arrowhead pointing from the receiving package (the source)
to the merged package (the target). In addition, the keyword «merge» is shown near the dashed line.

Target ﬁ\\\\gmerge»]

Source

Figure 7.65 - Notation for package merge

UML Superstructure Specification, v2.0 113

Examples

In Figure 7.66, packages P and Q are being merged by package R, while package S merges only package Q.

P Q
A A C
7
/
/
/ «merge» /]
/
/
/
/
/
/
\ !
\ S] «merge»
«merge» ;

Figure 7.66 - Simple example of package merges

The transformed packages R and S are shown in Figure 7.67. The expressions in square brackets indicating which
individual increments were merged into produce the final result, with the “@” character denoting the merge operator (note
that these expressions are not part of the standard notation, but are included here for explanatory purposes).

R

A

[P:A@(Q:A@R::A)]

| [Qucl

i

B
[P::B]

[Q:A@S::A]

[Q:C]

[S::B]

Figure 7.67 - Simple example of transformed packages following the merges in Figure 7.66

114

UML Superstructure Specification, v2.0

In Figure 7.68, additional package merges are introduced by having package T, which is empty prior to execution of the

merge operation, merge packages R and S defined previously.

§<\\ «merge»

-

S K- «merge»

Figure 7.68 - Introducing additional package merges

In Figure 7.69, the transformed version of package T is depicted. In this package, the partial definitions of A, B, C, and
D have all been brought together. Note that the types of the ends of the associations that were originally in the packages

Q and S have all been updated to refer to the appropriate elements in package T.

[(P::A@(Q::A@R::A))

[Q:C]

@S::A]
B

[P::B@S::B]

Figure 7.69 - The result of the additional package merges in Figure 7.68
7.3.41 Parameter (from Kernel, AssociationClasses)

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral

feature.

UML Superstructure Specification, v2.0

115

Generalizations
« “MultiplicityElement (from Kernel)” on page 90.
« “TypedElement (from Kernel)” on page 131.

Description

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral
feature. It has a type, and may have a multiplicity and an optional default value.

Attributes

e/ default: String [0..1] Specifies a String that represents a value to be used when no argument is supplied
for the Parameter. This is a derived value.

« direction: ParameterDirectionKind [1] Indicates whether a parameter is being sent into or out of a behavioral element.
The default value is in.

Associations

» Joperation: Operation[0..1] References the Operation owning this parameter. Subsets
NamedElement::namespace

« defaultValue: ValueSpecification [0..1] Specifies a ValueSpecification that represents a value to be used when no
argument is supplied for the Parameter. Subsets Element::ownedElement

Constraints

No additional constraints

Semantics

A parameter specifies how arguments are passed into or out of an invocation of a behavioral feature like an operation. The
type and multiplicity of a parameter restrict what values can be passed, how many, and whether the values are ordered.

If a default is specified for a parameter, then it is evaluated at invocation time and used as the argument for this parameter
if and only if no argument is supplied at invocation of the behavioral feature.

A parameter may be given a name, which then identifies the parameter uniquely within the parameters of the same
behavioral feature. If it is unnamed, it is distinguished only by its position in the ordered list of parameters.

The parameter direction specifies whether its value is passed into, out of, or both into and out of the owning behavioral
feature. A single parameter may be distinguished as a return parameter. If the behavioral feature is an operation, then the
type and multiplicity of this parameter is the same as the type and multiplicity of the operation itself.

Notation

No general notation. Specific subclasses of BehavioralFeature will define the notation for their parameters.

Style Guidelines

A parameter name typically starts with a lowercase letter.

116 UML Superstructure Specification, v2.0

7.3.42 ParameterDirectionKind (from Kernel)
Parameter direction kind is an enumeration type that defines literals used to specify direction of parameters.

Generalizations

None

Description

ParameterDirectionKind is an enumeration of the following literal values:
e in Indicates that parameter values are passed into the behavioral element by the caller.

e inout Indicates that parameter values are passed into a behavioral element by the caller and then back out to the caller
from the behavioral element.

e out Indicates that parameter values are passed from a behavioral element out to the caller.

e return Indicates that parameter values are passed as return values from a behavioral element back to the caller.
7.3.43 PrimitiveType (from Kernel)

A primitive type defines a predefined data type, without any relevant substructure (i.e., it has no parts). A primitive
datatype may have an algebra and operations defined outside of UML, for example, mathematically.

Generalizations

- “DataType (from Kernel)” on page 56.

Description

The instances of primitive type used in UML itself include Boolean, Integer, UnlimitedNatural, and String.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

The run-time instances of a primitive type are data values. The values are in many-to-one correspondence to mathematical
elements defined outside of UML (for example, the various integers).

Instances of primitive types do not have identity. If two instances have the same representation, then they are
indistinguishable.

UML Superstructure Specification, v2.0 117

Notation
A primitive type has the keyword «primitive» above or before the name of the primitive type.

Instances of the predefined primitive types may be denoted with the same notation as provided for references to such
instances (see the subtypes of “ValueSpecification (from Kernel)”).

7.3.44 Property (from Kernel, AssociationClasses)

A property is a structural feature.

A property related to a classifier by ownedAttribute represents an attribute, and it may also represent an association end.
It relates an instance of the class to a value or collection of values of the type of the attribute.

A property related to an Association by memberEnd or its specializations represents an end of the association. The type
of property is the type of the end of the association.

Generalizations

» “StructuralFeature (from Kernel)” on page 128

Description

Property represents a declared state of one or more instances in terms of a named relationship to a value or values. When
a property is an attribute of a classifier, the value or values are related to the instance of the classifier by being held in
slots of the instance. When a property is an association end, the value or values are related to the instance or instances at
the other end(s) of the association (see semantics of Association).

Property is indirectly a subclass of Constructs::TypedElement. The range of valid values represented by the property can
be controlled by setting the property’s type.

Package AssociationClasses

A property may have other properties (attributes) that serve as qualifiers.

Attributes

e aggregation: AggregationKind [1] Specifies the kind of aggregation that applies to the Property. The default value is
none.

e/ default: String [0..1] A String that is evaluated to give a default value for the Property when an object of

the owning Classifier is instantiated. This is a derived value.

e [isComposite: Boolean [1] This is a derived value, indicating whether the aggregation of the Property is
composite or not.

* isDerived: Boolean [1] Specifies whether the Property is derived, i.e., whether its value or values can be
computed from other information. The default value is false.

* isDerivedUnion : Boolean Specifies whether the property is derived as the union of all of the properties that are
constrained to subset it. The default value is false.

* isReadOnly : Boolean If true, the attribute may only be read, and not written. The default value is false.

118 UML Superstructure Specification, v2.0

Associations

e association: Association [0..1]
References the association of which this property is a member, if any.

e owningAssociation: Association [0..1]
References the owning association of this property. Subsets Property::association, NamedElement::namespace,
Feature::featuringClassifier, and RedefinableElement::redefinitionContext.

e datatype : DataType [0..1]
The DataType that owns this Property. Subsets NamedElement::namespace, Feature::featuringClassifier, and
Property::classifier.

e defaultValue: ValueSpecification [0..1]
A ValueSpecification that is evaluated to give a default value for the Property when an object of the owning Classifier is
instantiated. Subsets Element::ownedElement.

e redefinedProperty : Property [*]
References the properties that are redefined by this property. Subsets RedefinableElement::redefinedElement.

e subsettedProperty : Property [*]
References the properties of which this property is constrained to be a subset.

e [opposite : Property [0..1]
In the case where the property is one navigable end of a binary association with both ends navigable, this gives the other
end.

Package AssociationClasses

e associationEnd : Property [0..1] Designates the optional association end that owns a qualifier attribute. Subsets
Element::owner

e qualifier : Property [*] An optional list of ordered qualifier attributes for the end. If the list is empty, then
the Association is not qualified. Subsets Element::ownedElement

Constraints

[1] If this property is owned by a class associated with a binary association, and the other end of the association is also owned
by a class, then opposite gives the other end.

opposite =
if owningAssociation->notEmpty() and association.memberEnd->size() = 2 then
let otherEnd = (association.memberEnd - self)->any() in
if otherEnd.owningAssociation->notEmpty() then otherEnd else Set{} endif
else Set {}
endif
[2] A multiplicity on an aggregate end of a composite aggregation must not have an upper bound greater than 1.
isComposite implies (upperBound()->isEmpty() or upperBound() <= 1)
[3] Subsetting may only occur when the context of the subsetting property conforms to the context of the subsetted property.
subsettedProperty->notEmpty() implies
(subsettingContext()->notEmpty() and subsettingContext()->forAll (sc |
subsettedProperty->forAll(sp |
sp.subsettingContext()->exists(c | sc.conformsTo(c)))))
[4] A navigable property can only be redefined or subsetted by a navigable property.

UML Superstructure Specification, v2.0 119

(5]

6]

[7]

(8]

(9]

(subsettedProperty->exists(sp | sp.isNavigable())
implies isNavigable())
and
(redefinedProperty->exists(rp | rp.isNavigable())
implies isNavigable())
A subsetting property may strengthen the type of the subsetted property, and its upper bound may be less.
subsettedProperty->forAll(sp |
type.conformsTo(sp.type) and
((upperBound()->notEmpty() and sp.upperBound()->notEmpty()) implies
upperBound()<=sp.upperBound()))
Only a navigable property can be marked as readOnly.
isReadOnly implies isNavigable()
A derived union is derived.
isDerivedUnion implies isDerived
A derived union is read only.
isDerivedUnion implies isReadOnly
The value of isComposite is true only if aggregation is composite.
isComposite = (self.aggregation = #composite)

Additional Operations

[1]

(2]

120

The query isConsistentWith() specifies, for any two Properties in a context in which redefinition is possible, whether

redefinition would be logically consistent. A redefining property is consistent with a redefined property if the type of the
redefining property conforms to the type of the redefined property, the multiplicity of the redefining property (if specified)
is contained in the multiplicity of the redefined property, and the redefining property is derived if the redefined attribute is

property.
Property::isConsistentWith(redefinee : RedefinableElement) : Boolean
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = (redefinee.ocllsKindOf(Property) and
let prop: Property = redefinee.oclAsType(Property) in
type.conformsTo(prop.type) and
(lowerBound()->notEmpty and prop.lowerBound()->notEmpty() implies
lowerBound() >= prop.lowerBound()) and
(upperBound()->notEmpty and prop.upperBound()->notEmpty() implies
upperBound() <= prop.upperBound()) and
(prop.isDerived implies isDerived)
)

The query subsettingContext() gives the context for subsetting a property. It consists, in the case of an attribute, of the
corresponding classifier, and in the case of an association end, all of the classifiers at the other ends.

Property::subsettingContext() : Set(Type)
subsettingContext =
if association->notEmpty()
then association.endType-type
else if classifier->notEmpty() then Set{classifier} else Set{} endif
endif

UML Superstructure Specification, v2.0

[3] The query isNavigable() indicates whether it is possible to navigate across the property.

Property::isNavigable() : Boolean
isNavigable = not classifier->isEmpty() or association.owningAssociation.navigableOwnedEnd->includes(self)

Semantics

When a property is owned by a classifier other than an association via ownedAttribute, then it represents an attribute of
the class or data type. When related to an association via memberEnd or one of its specializations, it represents an end of
the association. In either case, when instantiated a property represents a value or collection of values associated with an
instance of one (or in the case of a ternary or higher-order association, more than one) type. This set of classifiers is called
the context for the property; in the case of an attribute the context is the owning classifier, and in the case of an
association end the context is the set of types at the other end or ends of the association.

The value or collection of values instantiated for a property in an instance of its context conforms to the property’s type.
Property inherits from MultiplicityElement and thus allows multiplicity bounds to be specified. These bounds constrain
the size of the collection. Typically and by default the maximum bound is 1.

Property also inherits the isUnique and isOrdered meta-attributes. When isUnique is true (the default) the collection of
values may not contain duplicates. When isOrdered is true (false being the default) the collection of values is ordered. In
combination these two allow the type of a property to represent a collection in the following way:

Table 7.1 - Collection types for properties

isOrdered isUnique Collection type
false true Set

true true OrderedSet

false false Bag

true false Sequence

If there is a default specified for a property, this default is evaluated when an instance of the property is created in the
absence of a specific setting for the property or a constraint in the model that requires the property to have a specific
value. The evaluated default then becomes the initial value (or values) of the property.

If a property is derived, then its value or values can be computed from other information. Actions involving a derived
property behave the same as for a non-derived property. Derived properties are often specified to be read-only (i.e., clients
cannot directly change values). But where a derived property is changeable, an implementation is expected to
appropriately change the source information of the derivation. The derivation for a derived property may be specified by
a constraint.

The name and visibility of a property are not required to match those of any property it redefines.

A derived property can redefine one which is not derived. An implementation must ensure that the constraints implied by
the derivation are maintained if the property is updated.

If a property has a specified default, and the property redefines another property with a specified default, then the
redefining property’s default is used in place of the more general default from the redefined property.

If a navigable property is marked as readOnly, then it cannot be updated once it has been assigned an initial value.

UML Superstructure Specification, v2.0 121

A property may be marked as the subset of another, as long as every element in the context of subsetting property
conforms to the corresponding element in the context of the subsetted property. In this case, the collection associated with
an instance of the subsetting property must be included in (or the same as) the collection associated with the
corresponding instance of the subsetted property.

A property may be marked as being a derived union. This means that the collection of values denoted by the property in
some context is derived by being the strict union of all of the values denoted, in the same context, by properties defined
to subset it. If the property has a multiplicity upper bound of 1, then this means that the values of all the subsets must be
null or the same.

A property may be owned by and in the namespace of a datatype.

Package AssociationClasses

A qualifier declares a partition of the set of associated instances with respect to an instance at the qualified end (the
qualified instance is at the end to which the qualifier is attached). A qualifier instance comprises one value for each
qualifier attribute. Given a qualified object and a qualifier instance, the number of objects at the other end of the
association is constrained by the declared multiplicity. In the common case in which the multiplicity is 0..1, the qualifier
value is unique with respect to the qualified object, and designates at most one associated object. In the general case of
multiplicity 0..*, the set of associated instances is partitioned into subsets, each selected by a given qualifier instance. In
the case of multiplicity 1 or 0..1, the qualifier has both semantic and implementation consequences. In the case of
multiplicity 0..*, it has no real semantic consequences but suggests an implementation that facilitates easy access of sets
of associated instances linked by a given qualifier value.

Note — The multiplicity of a qualifier is given assuming that the qualifier value is supplied. The “raw” multiplicity without the
qualifier is assumed to be 0..*. This is not fully general but it is almost always adequate, as a situation in which the raw
multiplicity is 1 would best be modeled without a qualifier.

Note — A qualified multiplicity whose lower bound is zero indicates that a given qualifier value may be absent, while a lower
bound of 1 indicates that any possible qualifier value must be present. The latter is reasonable only for qualifiers with a finite
number of values (such as enumerated values or integer ranges) that represent full tables indexed by some finite range of
values.

Notation

The following general notation for properties is defined. Note that some specializations of Property may also have
additional notational forms. These are covered in the appropriate Notation sections of those classes.

<property> ::= [<visibility>] [*/’] <name> [*:” <prop-type>] [‘[* <multiplicity> ‘]’] ['=" <default>]
['{* <prop-property > [*,” <prop-property >]* "}']
where:
« <visibility> is the visibility of the property. (See “VisibilityKind (from Kernel)” on page 133.)
<visibility> 1=+ | - | ‘# | *~
» ‘/” signifies that the property is derived.
« <name> is the name of the property.

» <prop-type> is the name of the Classifier that is the type of the property.

122 UML Superstructure Specification, v2.0

« <multiplicity> is the multiplicity of the property. If this term is omitted, it implies a multiplicity of 1 (exactly one). (See
“MultiplicityElement (from Kernel)” on page 90.)

» <default> is an expression that evaluates to the default value or values of the property.
» <prop-modifier > indicates a modifier that applies to the property.
<prop-modifier> ::= ‘readOnly’ | “‘union’ | ‘subsets‘ <property-name> |
‘redefines’ <property-name> | ‘ordered’ | ‘unique’ | <prop-constraint>
where:
« readOnly means that the property is read only.

« union means that the property is a derived union of its subsets.

« subsets <property-name> means that the property is a proper subset of the property identified by <property-
name>.

« redefines <property-name> means that the property redefines an inherited property identified by <property-
name>,

« ordered means that the property is ordered.
* unique means that there are no duplicates in a multi-valued property.

« <prop-constraint> is an expression that specifies a constraint that applies to the property.

All redefinitions shall be made explicit with the use of a {redefines <x>} property string. Redefinition prevents
inheritance of a redefined element into the redefinition context thereby making the name of the redefined element
available for reuse, either for the redefining element, or for some other.

Package AssociationClasses

A qualifier is shown as a small rectangle attached to the end of an association path between the final path segment and the
symbol of the classifier that it connects to. The qualifier rectangle is part of the association path, not part of the classifier.
The qualifier is attached to the source end of the association.

The multiplicity attached to the target end denotes the possible cardinalities of the set of target instances selected by the
pairing of a source instance and a qualifier value.

The qualifier attributes are drawn within the qualifier box. There may be one or more attributes shown one to a line.
Qualifier attributes have the same notation as classifier attributes, except that initial value expressions are not meaningful.

It is permissible (although somewnhat rare), to have a qualifier on each end of a single association.

A qualifier may not be suppressed.
Style Guidelines

Package AssociationClasses

The qualifier rectangle should be smaller than the attached class rectangle, although this is not always practical.

UML Superstructure Specification, v2.0 123

Examples

Package AssociationClasses

Bank Chessboard
accountNo rank : Rank
file : File
*
1
0..1 1
Person Square

Figure 7.70 - Qualified associations
7.3.45 Realization (from Dependencies)

Generalizations

« “Abstraction (from Dependencies)” on page 35

Description

Realization is a specialized abstraction relationship between two sets of model elements, one representing a specification
(the supplier) and the other represents an implementation of the latter (the client). Realization can be used to model
stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

A Realization signifies that the client set of elements are an implementation of the supplier set, which serves as the
specification. The meaning of ‘implementation’ is not strictly defined, but rather implies a more refined or elaborate form
in respect to a certain modeling context. It is possible to specify a mapping between the specification and implementation
elements, although it is not necessarily computable.

124 UML Superstructure Specification, v2.0

Notation

A Realization dependency is shown as a dashed line with a triangular arrowhead at the end that corresponds to the
realized element. Figure 7.71 illustrates an example in which the Business class is realized by a combination of Owner
and Employee classes.

Business

Owner Employee

Figure 7.71 - An example of a realization dependency
7.3.46 RedefinableElement (from Kernel)

A redefinable element is an element that, when defined in the context of a classifier, can be redefined more specifically or
differently in the context of another classifier that specializes (directly or indirectly) the context classifier.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 93

Description

A redefinable element is a named element that can be redefined in the context of a generalization. RedefinableElement is
an abstract metaclass.

Attributes

e isLeaf: Boolean Indicates whether it is possible to further specialize a RedefinableElement. If the value is true,
then it is not possible to further specialize the RedefinableElement. Default value is false.

Associations

e [redefinedElement: RedefinableElement[*] The redefinable element that is being redefined by this element. This is
a derived union.

e [redefinitionContext: Classifier[*] References the contexts that this element may be redefined from. This is
a derived union.
Constraints

[1] At least one of the redefinition contexts of the redefining element must be a specialization of at least one of the
redefinition contexts for each redefined element.

self.redefinedElement->forAll(e | self.isRedefinitionContextValid(e))

UML Superstructure Specification, v2.0 125

[2] A redefining element must be consistent with each redefined element.
self.redefinedElement->forAll(re | re.isConsistentWith(self))

Additional Operations

[1] The query isConsistentWith() specifies, for any two RedefinableElements in a context in which redefinition is possible,
whether redefinition would be logically consistent. By default, this is false; this operation must be overridden for
subclasses of RedefinableElement to define the consistency conditions.

RedefinableElement::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = false
[2] The query isRedefinitionContextValid() specifies whether the redefinition contexts of this RedefinableElement are
properly related to the redefinition contexts of the specified RedefinableElement to allow this element to redefine the

other. By default at least one of the redefinition contexts of this element must be a specialization of at least one of the
redefinition contexts of the specified element.

RedefinableElement::isRedefinitionContextValid(redefined: RedefinableElement): Boolean;
isRedefinitionContextValid = redefinitionContext->exists(c | c.allParents()->includes(redefined.redefinitionContext))

Semantics

A RedefinableElement represents the general ability to be redefined in the context of a generalization relationship. The
detailed semantics of redefinition varies for each specialization of RedefinableElement.

A redefinable element is a specification concerning instances of a classifier that is one of the element’s redefinition
contexts. For a classifier that specializes that more general classifier (directly or indirectly), another element can redefine
the element from the general classifier in order to augment, constrain, or override the specification as it applies more
specifically to instances of the specializing classifier.

A redefining element must be consistent with the element it redefines, but it can add specific constraints or other details
that are particular to instances of the specializing redefinition context that do not contradict invariant constraints in the
general context.

A redefinable element may be redefined multiple times. Furthermore, one redefining element may redefine multiple
inherited redefinable elements.

Semantic Variation Points

There are various degrees of compatibility between the redefined element and the redefining element, such as name
compatibility (the redefining element has the same name as the redefined element), structural compatibility (the client
visible properties of the redefined element are also properties of the redefining element), or behavioral compatibility (the
redefining element is substitutable for the redefined element). Any kind of compatibility involves a constraint on
redefinitions. The particular constraint chosen is a semantic variation point.

Notation

No general notation. See the subclasses of RedefinableElement for the specific notation used.
7.3.47 Relationship (from Kernel)

Relationship is an abstract concept that specifies some kind of relationship between elements.

126 UML Superstructure Specification, v2.0

Generalizations

« “Element (from Kernel)” on page 60

Description
A relationship references one or more related elements. Relationship is an abstract metaclass.

Attributes

No additional attributes

Associations
e [relatedElement: Element [1..*] Specifies the elements related by the Relationship. This is a derived union.

Constraints

No additional constraints

Semantics

Relationship has no specific semantics. The various subclasses of Relationship will add semantics appropriate to the
concept they represent.

Notation

There is no general notation for a Relationship. The specific subclasses of Relationship will define their own notation. In
most cases the notation is a variation on a line drawn between the related elements.

7.3.48 Slot (from Kernel)
A slot specifies that an entity modeled by an instance specification has a value or values for a specific structural feature.

Generalizations

« “Element (from Kernel)” on page 60

Description

A slot is owned by an instance specification. It specifies the value or values for its defining feature, which must be a
structural feature of a classifier of the instance specification owning the slot.

Attributes

No additional attributes

Associations
e definingFeature : StructuralFeature [1] The structural feature that specifies the values that may be held by the slot.
e owninglnstance : InstanceSpecification [1] The instance specification that owns this slot. Subsets Element::owner

e value : ValueSpecification [*] The value or values corresponding to the defining feature for the owning
instance specification. This is an ordered association. Subsets
Element::ownedElement

UML Superstructure Specification, v2.0 127

Constraints

No additional constraints

Semantics

A slot relates an instance specification, a structural feature, and a value or values. It represents that an entity modeled by
the instance specification has a structural feature with the specified value or values. The values in a slot must conform to
the defining feature of the slot (in type, multiplicity, etc.).

Notation

See “InstanceSpecification (from Kernel).”
7.3.49 StructuralFeature (from Kernel)
A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier.

Generalizations
» “Feature (from Kernel)” on page 66
« “MultiplicityElement (from Kernel)” on page 90
» “TypedElement (from Kernel)” on page 131

Description

A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier. Structural
feature is an abstract metaclass.

By specializing multiplicity element, it supports a multiplicity that specifies valid cardinalities for the collection of values
associated with an instantiation of the structural feature.

Attributes

* isReadOnly: Boolean States whether the feature’s value may be modified by a client. Default is false.

Associations

No additional associations

Constraints

No additional constraints

Semantics

A structural feature specifies that instances of the featuring classifier have a slot whose value or values are of a specified
type.

128 UML Superstructure Specification, v2.0

Notation

A read only structural feature is shown using {readOnly} as part of the notation for the structural feature. A modifiable
structural feature is shown using {unrestricted} as part of the notation for the structural feature. This annotation may be
suppressed, in which case it is not possible to determine its value from the diagram.

Presentation Options

It is possible to only allow suppression of this annotation when isReadOnly=false. In this case it is possible to assume this
value in all cases where {readOnly} is not shown.

Changes from previous UML
The meta-attribute targetScope, which characterized StructuralFeature and AssociationEnd in prior UML is no longer
supported.

7.3.50 Substitution (from Dependencies)

Generalizations

- “Realization (from Dependencies)” on page 124

Description

A substitution is a relationship between two classifiers which signifies that the substitutingClassifier complies with the
contract specified by the contract classifier. This implies that instances of the substitutingClassifier are runtime
substitutable where instances of the contract classifier are expected.

Associations
e contract: Classifier [1] (Specializes Dependency.target.).

e substitutingClassifier: Classifier [1] (Specializes Dependency.client).

Attributes

None

Constraints

No additional constraints

Semantics

The substitution relationship denotes runtime substitutability that is not based on specialization. Substitution, unlike
specialization, does not imply inheritance of structure, but only compliance of publicly available contracts. A substitution
like relationship is instrumental to specify runtime substitutability for domains that do not support specialization such as
certain component technologies. It requires that (1) interfaces implemented by the contract classifier are also implemented
by the substituting classifier, or else the substituting classifier implements a more specialized interface type. And, (2) the
any port owned by the contract classifier has a matching port (see ports) owned by the substituting classifier.

Notation

A Substitution dependency is shown as a dependency with the keyword «substitute» attached to it.

UML Superstructure Specification, v2.0 129

Examples

In the example below, a generic Window class is substituted in a particular environment by the Resizable Window class.

«substitute»

] Resizable
Window = —— = — — — -

Window

Figure 7.72 - An example of a substitute dependency
7.3.51 Type (from Kernel)

A type constrains the values represented by a typed element.

Generalizations

» “PackageableElement (from Kernel)” on page 105

Description

A type serves as a constraint on the range of values represented by a typed element. Type is an abstract metaclass.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Additional Operations

[1] The query conformsTo() gives true for a type that conforms to another. By default, two types do not conform to each other.
This query is intended to be redefined for specific conformance situations.

conformsTo(other: Type): Boolean;
conformsTo = false

Semantics

A type represents a set of values. A typed element that has this type is constrained to represent values within this set.

Notation

No general notation

130 UML Superstructure Specification, v2.0

7.3.52 TypedElement (from Kernel)
A typed element has a type.

Generalizations

» “NamedElement (from Kernel, Dependencies)” on page 93

Description

A typed element is an element that has a type that serves as a constraint on the range of values the element can represent.
Typed element is an abstract metaclass.

Attributes

No additional attributes

Associations

e type: Type [0..1] The type of the TypedElement.

Constraints

No additional constraints

Semantics

Values represented by the element are constrained to be instances of the type. A typed element with no associated type
may represent values of any type.

Notation
No general notation

7.3.53 Usage (from Dependencies)

Generalizations

» “Dependency (from Dependencies)” on page 58

Description

A usage is a relationship in which one element requires another element (or set of elements) for its full implementation or
operation. In the metamodel, a Usage is a Dependency in which the client requires the presence of the supplier.

Attributes

No additional attributes

Associations

No additional associations

UML Superstructure Specification, v2.0 131

Constraints

No additional constraints

Semantics

The usage dependency does not specify how the client uses the supplier other than the fact that the supplier is used by the
definition or implementation of the client.

Notation

A usage dependency is shown as a dependency with a «use» keyword attached to it.

Examples

In the example below, an Order class requires the Line Item class for its full implementation.

«use»

Line
Order f—————— =

Item

Figure 7.73 - An example of a use dependency
7.3.54 ValueSpecification (from Kernel)
A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.

Generalizations
« “PackageableElement (from Kernel)” on page 105

« “TypedElement (from Kernel)” on page 131

Description

ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference an instance or
it may be an expression denoting an instance or instances when evaluated.

Attributes

e expression: Expression[0..1] If this value specification is an operand, the owning expression. Subsets Element::owner.

Associations

No additional associations

Constraints

No additional constraints

132 UML Superstructure Specification, v2.0

Additional Operations

These operations are introduced here. They are expected to be redefined in subclasses. Conforming implementations may
be able to compute values for more expressions that are specified by the constraints that involve these operations.

[1] The query isComputable() determines whether a value specification can be computed in a model. This operation cannot be
fully defined in OCL. A conforming implementation is expected to deliver true for this operation for all value
specifications that it can compute, and to compute all of those for which the operation is true. A conforming
implementation is expected to be able to compute the value of all literals.

ValueSpecification::isComputable(): Boolean;
isComputable = false
[2] The query integerValue() gives a single Integer value when one can be computed.
ValueSpecification::integerValue() : [Integer];
integerValue = Set{}

[3] The query booleanValue() gives a single Boolean value when one can be computed.

ValueSpecification::booleanValue() : [Boolean];
booleanValue = Set{}

[4] The query stringValue() gives a single String value when one can be computed.
ValueSpecification::stringValue() : [String];
stringValue = Set{}

[5]1 The query unlimitedValue() gives a single UnlimitedNatural value when one can be computed.
ValueSpecification::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = Set{}

[6] The query isNull() returns true when it can be computed that the value is null.
ValueSpecification::isNull() : Boolean;
isNull = false

Semantics

A value specification yields zero or more values. It is required that the type and number of values is suitable for the
context where the value specification is used.

Notation

No general notation
7.3.55 VisibilityKind (from Kernel)

VisibilityKind is an enumeration type that defines literals to determine the visibility of elements in a model.

Generalizations

None

Description

VisibilityKind is an enumeration of the following literal values:

UML Superstructure Specification, v2.0 133

e public

e private
e protected
e package

Additional Operations

[1] The query bestVisibility() examines a set of VisibilityKinds that includes only public and private, and returns public as the
preferred visibility.
VisibilityKind::bestVisibility(vis: Set(VisibilityKind)) : VisibilityKind;
pre: not vis->includes(#protected) and not vis->includes(#package)
bestVisibility = if vis->includes(#public) then #public else #private endif

Semantics

VisibilityKind is intended for use in the specification of visibility in conjunction with, for example, the Imports,
Generalizations, and Packages packages. Detailed semantics are specified with those mechanisms. If the Visibility
package is used without those packages, these literals will have different meanings, or no meanings.

A public element is visible to all elements that can access the contents of the namespace that owns it.
« A private element is only visible inside the namespace that owns it.
« A protected element is visible to elements that have a generalization relationship to the namespace that owns it.

» A package element is owned by a namespace that is not a package, and is visible to elements that are in the same
package as its owning namespace. Only named elements that are not owned by packages can be marked as having
package visibility. Any element marked as having package visibility is visible to all elements within the nearest
enclosing package (given that other owning elements have proper visibility). Outside the nearest enclosing package, an
element marked as having package visibility is not visible.

In circumstances where a named element ends up with multiple visibilities (for example, by being imported multiple
times) public visibility overrides private visibility. If an element is imported twice into the same namespace, once using a
public import and once using a private import, it will be public.

Notation
The following visual presentation options are available for representing VisibilityKind enumeration literal values:

e ‘+’ public

o ‘7 private
e ‘#” protected
« ‘~’ package

7.4 Diagrams

Structure diagram

This section outlines the graphic elements that may be shown in structure diagrams, and provides cross references where
detailed information about the semantics and concrete notation for each element can be found. It also furnishes examples
that illustrate how the graphic elements can be assembled into diagrams.

134 UML Superstructure Specification, v2.0

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 7.2.

Table 7.2 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE

Class See “Class (from Kernel)” on page 45.

ClassName

Interface See “Interface (from Interfaces)” on page 82.

InterfaceName
—0

<<interface>>

InterfaceName
InstanceSpecification See “InstanceSpecification (from Kernel)” on
page 78. (Note that instances of any classifier can
Instancename : be shown by prefixing the classifier name by the

ClassName

instance name followed by a colon and underlining
the complete name string.)

Package See “Package (from Kernel)” on page 103.
|

PackageName

Graphical paths

The graphic paths that can be included in structure diagrams are shown in Table 7.3.

Table 7.3 - Graphic paths included in structure diagrams

PATH TYPE NOTATION REFERENCE

Aggregation See “AggregationKind (from Kernel)” on page 35.

UML Superstructure Specification, v2.0 135

Table 7.3 - Graphic paths included in structure diagrams

PATH TYPE NOTATION REFERENCE
Association See “Association (from Kernel)” on page 36.
Composition See “AggregationKind (from Kernel)” on page 35.
-
Dependency See “Dependency (from Dependencies)” on
page 58.
————————— >
Generalization See “Generalization (from Kernel, PowerTypes)”
r~ | onpage 67.
InterfaceRealization See “InterfaceRealization (from Interfaces)” on
page 85.
———————— -
Realization See “Realization (from Dependencies)” on
page 124.
———————— =
Usage See “Usage (from Dependencies)” on page 131.
«use»
————————— >
Package Merge See “PackageMerge (from Kernel)” on page 107.
«merge»
————————— >
Packagelmport See “Packagelmport (from Kernel)” on page 106.
(public)
«import»
————————— >
136

UML Superstructure Specification, v2.0

Table 7.3 - Graphic paths included in structure diagrams

PATH TYPE NOTATION REFERENCE
Packagelmport See “Packagelmport (from Kernel)” on page 106.
(private)
«access»
————————— >
Variations

Variations of structure diagrams often focus on particular structural aspects, such as relationships between packages,
showing instance specifications, or relationships between classes. There are no strict boundaries between different
variations; it is possible to display any element you normally display in a structure diagram in any variation.

Class diagram
The following nodes and edges are typically drawn in a class diagram:

» Association

» Aggregation
« Class

» Composition
» Dependency
» Generalization

« Interface
« InterfaceRealization
» Realization

Package diagram
The following nodes and edges are typically drawn in a package diagram:

» Dependency

» Package

« PackageExtension
» Packagelmport

Object diagram
The following nodes and edges are typically drawn in an object diagram:

« InstanceSpecification
« Link (i.e., Association)

UML Superstructure Specification, v2.0 137

138 UML Superstructure Specification, v2.0

8 Components

8.1 Overview

The Components package specifies a set of constructs that can be used to define software systems of arbitrary size and
complexity. In particular, the package specifies a component as a modular unit with well-defined interfaces that is
replaceable within its environment. The component concept addresses the area of component-based development and
component-based system structuring, where a component is modeled throughout the development life cycle and
successively refined into deployment and run-time.

An important aspect of component-based development is the reuse of previously constructed components. A component
can always be considered an autonomous unit within a system or subsystem. It has one or more provided and/or required
interfaces (potentially exposed via ports), and its internals are hidden and inaccessible other than as provided by its
interfaces. Although it may be dependent on other elements in terms of interfaces that are required, a component is
encapsulated and its dependencies are designed such that it can be treated as independently as possible. As a result,
components and subsystems can be flexibly reused and replaced by connecting (“wiring”) them together via their
provided and required interfaces. The aspects of autonomy and reuse also extend to components at deployment time. The
artifacts that implement component are intended to be capable of being deployed and re-deployed independently, for
instance to update an existing system.

The Components package supports the specification of both logical components (e.g., business components, process
components) and physical components (e.g., EJB components, CORBA components, COM+ and .NET components,
WSDL components, etc.), along with the artifacts that implement them and the nodes on which they are deployed and
executed. It is anticipated that profiles based around components will be developed for specific component technologies
and associated hardware and software environments.

Basic Components

The BasicComponents package focuses on defining a component as an executable element in a system. It defines the
concept of a component as a specialized class that has an external specification in the form of one or more provided and
required interfaces, and an internal implementation consisting of one or more classifiers that realize its behavior. In
addition, the BasicComponents package defines specialized connectors for ‘wiring” components together based on
interface compatibility.

Packaging Components

The PackagingComponents package focuses on defining a component as a coherent group of elements as part of the
development process. It extends the concept of a basic component to formalize the aspects of a component as a ‘building
block’ that may own and import a (potentially large) set of model elements.

UML Superstructure Specification, v2.0 139

8.2 Abstract

Figure 8.1 shows the dependencies of the Component packages.

syntax

-

StructuredClasses

Dependencies

/

<<merge>>

|
L

BasicComponents

N

<<merge>>

e
/ <<merge>>
/

PackagingComponents

Figure 8.1 - Dependencies between packages described in this chapter (transitive dependencies to Kernel and
Interfaces packages are not shown).

140

UML Superstructure Specification, v2.0

Package BasicComponents

Class
(from SricturedClass es)

Component +abstraction +/realization
isindirectlylnstantiated : Boolean L o Realization
0..1{subsets source, {subsets owned Element, *
subsets owner, subsets clientDependency}
subsets client}
+realizingClassifier
+/required +iprovided {subsets supplier, | |
* * subsets target}
Interface | ifi
(from hter ces) Classifier
(fromKernel)

Figure 8.2 - The metaclasses that define the basic Component construct

+contract
Connector

Behavior

kind : ConnectorKind % | (from BasicBehaviors)

<<enumeration>>
ConnectorKind

asse mbly
delegation

Figure 8.3 - The metaclasses that define the component wiring constructs

UML Superstructure Specification, v2.0 141

Package PackagingComponents

+ownedMember
Component P PackageableElement

(fromKernel)

0.1 {redefines ownedMember} x

Figure 8.4 - The packaging capabilities of Components

8.3 Class Descriptions

8.3.1 Component (from BasicComponents, PackagingComponents)

A component represents a modular part of a system that encapsulates its contents and whose manifestation is replaceable
within its environment.

A component defines its behavior in terms of provided and required interfaces. As such, a component serves as a type
whose conformance is defined by these provided and required interfaces (encompassing both their static as well as
dynamic semantics). One component may therefore be substituted by another only if the two are type conformant. Larger
pieces of a system’s functionality may be assembled by reusing components as parts in an encompassing component or
assembly of components, and wiring together their required and provided interfaces.

A component is modeled throughout the development life cycle and successively refined into deployment and run-time. A
component may be manifest by one or more artifacts, and in turn, that artifact may be deployed to its execution
environment. A deployment specification may define values that parameterize the component’s execution. (See
Deployment chapter).

Generalizations

» “Class (from StructuredClasses)” on page 160
Description

BasicComponents

A component is a subtype of Class that provides for a Component having attributes and operations, and being able to
participate in Associations and Generalizations. A Component may form the abstraction for a set of realizingClassifiers
that realize its behavior. In addition, because a Class itself is a subtype of an EncapsulatedClassifier, a Component may
optionally have an internal structure and own a set of Ports that formalize its interaction points.

A component has a number of provided and required Interfaces, that form the basis for wiring components together, either
using Dependencies, or by using Connectors. A provided Interface is one that is either implemented directly by the
component or one of its realizingClassifiers, or it is the type of a provided Port of the Component. A required interface is
designated by a Usage Dependency from the Component or one of its realizingClassifiers, or it is the type of a required
Port.

142 UML Superstructure Specification, v2.0

PackagingComponents

A component is extended to define the grouping aspects of packaging components. This defines the Namespace aspects of
a Component through its inherited ownedMember and elementimport associations. In the namespace of a component, all
model elements that are involved in or related to its definition are either owned or imported explicitly. This may include,
for example, UseCases and Dependencies (e.g., mappings), Packages, Components, and Artifacts.

Attributes

BasicComponents

L]

isIndirectlyInstantiated : Boolean {default = true}

The kind of instantiation that applies to a Component. If false, the component is instantiated as an addressable object. If
true, the Component is defined at design-time, but at run-time (or execution-time) an object specified by the Component
does not exist, that is, the component is instantiated indirectly, through the instantiation of its realizing classifiers or parts.
Several standard stereotypes use this meta attribute (e.g., «specification», «focus», «subsystem»).

Associations

BasicComponents

L]

/provided: Interface [*]

The interfaces that the component exposes to its environment. These interfaces may be Realized by the Component or any
of its realizingClassifiers, or they may be the Interfaces that are provided by its public Ports. The provided interfaces
association is a derived association:

context Component::provided derive:
let implementedinterfaces = self.implementation->collect(impl|impl.contract) and
let realizedInterfaces = Realizelnterfaces(self) and
let realizingClassifierInterfaces = RealizedInterfaces(self.realizingClassifier) and
let typesOfRequiredPorts = self.ownedPort.provided in
(((implementedinterfaces->union(realizedInterfaces)->union(realizingClassifierinterfaces))->
union(typesOfRequiredPorts))->asSet()

[required: Interface [*]
The interfaces that the component requires from other components in its environment in order to be able to offer its full set
of provided functionality. These interfaces may be Used by the Component or any of its realizingClassifiers, or they may
be the Interfaces that are required by its public Ports. The required interfaces association is a derived association:
context Component::required derive:

let usedinterfaces = UsedInterfaces(self) and

let realizingClassifierUsedInterfaces = UsedInterfaces(self.realizingClassifier) and

let typesOfUsedPorts = self.ownedPort.required in

((usedinterfaces->union(realizingClassifierUsedInterfaces))->
union(typesOfUsedPorts))->asSet()

[realization:; Realization [*]
The set of Realizations owned by the Component. Realizations reference the Classifiers of which the Component is an
abstraction (i.e., that realize its behavior).

PackagingComponents

L]

ownedMember: PackageableElement [*]

The set of PackageableElements that a Component owns. In the namespace of a component, all model elements that are
involved in or related to its definition may be owned or imported explicitly. These may include, for example, Classes,
Interfaces, Components, Packages, Use cases, Dependencies (e.g., mappings), and Artifacts.

UML Superstructure Specification, v2.0 143

Constraints

No further constraints

Additional Operations

[1] Utility returning the set of realized interfaces of a component:

def: RealizedInterfaces : (classifier : Classifier) : Interface = (classifier.clientDependency->
select(dependency|dependency.oclisKindOf(Realization) and dependency.supplier.oclisKindOf(Interface)))->
collect(dependency|dependency.client)

[2] Utility returning the set of required interfaces of a component:

def: Usedinterfaces : (classifier : Classifier) : Interface = (classifier.supplierDependency->
select(dependency|dependency.oclisKindOf(Usage) and dependency.supplier.oclisKindOf(interface)))->
collect(dependency|dependency.supplier)

Semantics

A component is a self contained unit that encapsulates the state and behavior of a number of classifiers. A component
specifies a formal contract of the services that it provides to its clients and those that it requires from other components
or services in the system in terms of its provided and required interfaces.

A component is a substitutable unit that can be replaced at design time or run-time by a component that offers equivalent
functionality based on compatibility of its interfaces. As long as the environment obeys the constraints expressed by the
provided and required interfaces of a component, it will be able to interact with this environment. Similarly, a system can
be extended by adding new component types that add new functionality.

The required and provided interfaces of a component allow for the specification of structural features such as attributes
and association ends, as well as behavioral features such as operations and events. A component may implement a
provided interface directly, or, its realizing classifiers may do so. The required and provided interfaces may optionally be
organized through ports, these enable the definition of named sets of provided and required interfaces that are typically
(but not always) addressed at run-time.

A component has an external view (or “black-box” view) by means of its publicly visible properties and operations.
Optionally, a behavior such as a protocol state machine may be attached to an interface, port, and to the component itself,
to define the external view more precisely by making dynamic constraints in the sequence of operation calls explicit.
Other behaviors may also be associated with interfaces or connectors to define the ‘contract’ between participants in a
collaboration (e.g., in terms of use case, activity, or interaction specifications).

The wiring between components in a system or other context can be structurally defined by using dependencies between
component interfaces (typically on structure diagrams). Optionally, a more detailed specification of the structural
collaboration can be made using parts and connectors in composite structures, to specify the role or instance level
collaboration between components (See Chapter Composite Structures).

A component also has an internal view (or “white-box” view) by means of its private properties and realizing classifiers.
This view shows how the external behavior is realized internally. The mapping between external and internal view is by
means of dependencies (on structure diagrams), or delegation connectors to internal parts (on composite structure
diagrams). Again, more detailed behavior specifications such as interactions and activities may be used to detail the
mapping from external to internal behavior.

A number of UML standard stereotypes exist that apply to component. For example, «subsystem» to model large-scale
components, and «specification» and «realization» to model components with distinct specification and realization
definitions, where one specification may have multiple realizations (see the UML Standard Elements Appendix).

144 UML Superstructure Specification, v2.0

Notation

A component is shown as a Classifier rectangle with the keyword «component». Optionally, in the right hand corner a
component icon can be displayed. This is a classifier rectangle with two smaller rectangles protruding from its left hand

side.

Quotelnf
O——| «component> = |

QuoteService

Figure 8.5 - A Component with one provided interface

ItemAllocation

: «component» @ Person C

Tracking Order

Invoice i

J\Orderableltem

Figure 8.6 - A Component with two provided and three required interfaces

An external view of a Component is by means of Interface symbols sticking out of the Component box (external, or
black-box view). Alternatively, the interfaces and/or individual operations and attributes can be listed in the compartments
of a component box (for scalability, tools may offer way of listing and abbreviating component properties and behavior).

«component» @

Order

«provided interfaces»
OrderEntry
Billing
«required interfaces»
Invoice
create (...)
registerPayment (...)

Figure 8.7 - Black box notation showing a listing of the properties of a component

For displaying the full signature of an interface of a component, the interfaces can also be displayed as typical classifier
rectangles that can be expanded to show details of operations and events.

UML Superstructure Specification, v2.0 145

«Interface»

«component»

1

«use»

«Interface»

OrderEntry S Order R— Person
Create() FindbyName()
ValidateDetails() Create()

AddOrderline() GetDetails()

Figure 8.8 - Explicit representation of the provided and required interfaces, allowing interface details such
as operation to be displayed (when desired).

An internal, or white box view of a Component is where the realizing classifiers are listed in an additional compartment.
Compartments may also be used to display a listing of any parts and connectors, or any implementing artifacts.

«component» @
Order

«provided interfaces»
OrderEntry
AccountPayable

«required interfaces»
Person

«realizations»
OrderHeader
Lineltem

«artifacts»
Order.jar

Figure 8.9 - A white-box representation of a component

The internal classifiers that realize the behavior of a component may be displayed by means of general dependencies.
Alternatively, they may be nested within the component shape.

5]

«component»
Customer

Customerimpl CustomerColl CustomerDef

Figure 8.10 - A representation of the realization of a complex component

Alternatively, the internal classifiers that realize the behavior of a component may be displayed nested within the
component shape.

146 UML Superstructure Specification, v2.0

OrderEntry
07

«component»

Order

OrderHeader

order 1

item *

Lineltem

Person

Figure 8.11 - An alternative nested representation of a complex component

If more detail is required of the role or instance level containment of a component, then an internal structure consisting of
parts and connectors can be defined for that component. This allows, for example, explicit part names or connector names
to be shown in situations where the same Classifier (Association) is the type of more than one Part (Connector). That is,
the Classifier is instantiated more than once inside the component, playing different roles in its realization. Optionally,

specific instances (InstanceSpecifications) can also be referred to as in this notation.

Interfaces that are exposed by a Component and notated on a diagram, either directly or though a port definition, may be
inherited from a supertype component. These interfaces are indicated on the diagram by preceding the name of the

interface by a forward slash. An example of this can be found in Figure 8.14, where “/ordereditem” is an interface that is
implemented by a supertype of the Product component.

OrderEntry
o——1

Wte»
o —

OrderEntry

«component» @

:Order

«component»
Store

Person

«component» @

Orderableltem

Orderableltem T

«component» @

:Product

Person

o

:Customer

Account i

=1

«delegate»

—C

Account

Figure 8.12 - An internal or white-box view of the internal structure of a component that contains other components as

parts of its internal assembly.

UML Superstructure Specification, v2.0

147

Acrtifacts that implement components can be connected to them by physical containment or by an «implement»
relationship, which is an instance of the meta association between Component and Artifact.

Examples
«component» @ «component»
Order = f---------------3 Account

i
I
1
I
]
i
1
A2

«component»

Product d

Figure 8.13 - Example of an overview diagram showing components and their general dependencies

«component» @ «component @
1 Order
Account —O.
account ;
«focus»
5—[OrderHeader
AccountPayable
Jordereditem «component» @
1
o Product
concemns |
*
Lineltem ¢
Orderableltem

Figure 8.14 - Example of a platform independent model of a component, its provided and required interfaces, and wir-
ing through dependencies on a structure diagram.

148 UML Superstructure Specification, v2.0

«component» @ Person

:BackOrder
«component» OrderEmry «component» @ Person «component» @
@ e
:ShoppingCart OrderEntry :Order Person :Customer
Orderableltem
«component» @ Orderableltem ? «component» @
:Service \ Orderableltem Client :Organization

«component» @

:Product

Figure 8.15 - Example of a composite structure of components, with connector wiring between provided and required
interfaces of parts (Note: “Client” interface is a subtype of “Person”).

The wiring of components can be represented on structure diagrams by means of classifiers and dependencies between
them (Note: the ball-and-socket notation from Figure 8.15 may be used as a notation option for dependency based
wiring). On composite structure diagrams, detailed wiring can be performed at the role or instance level by defining parts
and connectors.

Changes from previous UML
The following changes from UML 1.x have been made.

The component model has made a number of implicit concepts from the UML 1.x model explicit, and made the concept
more applicable throughout the modeling life cycle (rather than the implementation focus of UML 1.x). In particular, the
“resides” relationship from 1.x relied on namespace aspects to define both namespace aspects as well as ‘residence’
aspects. These two aspects have been separately modeled in the UML metamodel in 2.0. The basic residence relationship
in 1.x maps to the realizingClassifiers relationship in 2.0. The namespace aspects are defined through the basic namespace
aspects of Classifiers in UML 2.0, and extended in the PackagingComponents metamodel for optional namespace
relationships to elements other than classifiers.

In addition, the Component construct gains the capabilities from the general improvements in CompositeStructures
(around Parts, Ports, and Connectors).

In UML 2.0, a Component is notated by a classifier symbol that no longer has two protruding rectangles. These were
cumbersome to draw and did not scale well in all circumstances. Also, they interfered with any interface symbols on the
edge of the Component. Instead, a «component» keyword notation is used in UML 2.0. Optionally, a component icon that
is similar to the UML 1.4 icon can still be used in the upper right-hand corner of the component symbol. For backward
compatibility reasons, the UML 1.4 notation with protruding rectangles can still be used.

UML Superstructure Specification, v2.0 149

8.3.2 Connector (from BasicComponents)

The connector concept is extended in the Components package to include interface based constraints and notation.

A delegation connector is a connector that links the external contract of a component (as specified by its ports) to the
internal realization of that behavior by the component’s parts. It represents the forwarding of signals (operation requests
and events): a signal that arrives at a port that has a delegation connector to a part or to another port will be passed on to
that target for handling.

An assembly connector is a connector between two components that defines that one component provides the services that
another component requires. An assembly connector is a connector that is defined from a required interface or port to a
provided interface or port.

Generalizations

« “Connector (from InternalStructures)” on page 170 (merge increment)

Description

In the metamodel, a connector kind attribute is added to the Connector metaclass. Its value is an enumeration type with
valid values “assembly” or “delegation.”

Attributes
BasicComponents

* kind : ConnectorKind Indicates the kind of connector.

Associations

No additional associations

Constraints

[1] A delegation connector must only be defined between used Interfaces or Ports of the same kind (e.g., between two
provided Ports or between two required Ports).

[2] If adelegation connector is defined between a used Interface or Port and an internal Part Classifier, then that Classifier
must have an “implements” relationship to the Interface type of that Port.

[3] If adelegation connector is defined between a source Interface or Port and a target Interface or Port, then the target
Interface must support a signature compatible subset of Operations of the source Interface or Port.

[4] Inacomplete model, if a source Port has delegation connectors to a set of delegated target Ports, then the union of the
Interfaces of these target Ports must be signature compatible with the Interface that types the source Port.

[5] An assembly connector must only be defined from a required Interface or Ports to a provided Interface or Port.

Semantics

A delegation connector is a declaration that behavior that is available on a component instance is not actually realized by
that component itself, but by another instance that has “compatible” capabilities. This may be another Component or a
(simple) Class. The latter situation is modeled through a delegation connector from a Component Interface or Port to a
contained Class that functions as a Part. In that case, the Class must have an implements relationship to the Interface of
the Port.

150 UML Superstructure Specification, v2.0

Delegation connectors are used to model the hierarchical decomposition of behavior, where services provided by a
component may ultimately be realized by one that is nested multiple levels deep within it. The word delegation suggests
that concrete message and signal flow will occur between the connected ports, possibly over multiple levels. It should be
noted that such signal flow is not always realized in all system environments or implementations (i.e., it may be design
time only).

A port may delegate to a set of ports on subordinate components. In that case, these subordinate ports must collectively
offer the delegated functionality of the delegating port. At execution time, signals will be delivered to the appropriate
port. In the cases where multiple target ports support the handling of the same signal, the signal will be delivered to all
these subordinate ports.

The execution time semantics for an assembly connector are that signals travel along an instance of a connector,
originating in a required port and delivered to a provided port. Multiple connectors directed from a single required
interface or port to provided interfaces on different components indicates that the instance that will handle the signal will
be determined at execution time. Similarly, multiple required ports that are connected to a single provided port indicates
that the request may originate from instances of different component types.

The interface compatibility between provided and required ports that are connected enables an existing component in a
system to be replaced by one that (minimally) offers the same set of services. Also, in contexts where components are
used to extend a system by offering existing services, but also adding new functionality, assembly connectors can be used
to link in the new component definition. That is, by adding the new component type that offers the same set of services
as existing types, and defining new assembly connectors to link up its provided and required ports to existing ports in an
assembly.

Notation

A delegation connector is notated as a Connector from the delegating source Port to the handling target Part, and vice
versa for required Interfaces or Ports.

«component»
OrderEntry Order @
o—}
:OrderHeader
+—C
Person
:Lineltem
order item
OrderHeader @—— Lineltem
1

Figure 8.16 - Delegation connectors connect the externally provided interfaces of a component to the parts that realize
or require them.

UML Superstructure Specification, v2.0 151

An assembly connector is notated by a “ball-and-socket” connection between a provided interface and a required
interface. This notation allows for succinct graphical wiring of components, a requirement for scaling in complex
systems.

When this notation is used to connect “complex” ports that are typed by multiple provided and/or required interfaces, the
various interfaces are listed as an ordered set, designated with {provided} or {required} if needed.

OrderEntry «component» @ OrderEntry «component» @
: Order (— :Order
Orderableltem
Orderableltem
«component»
O— Product @
Orderableltem Orderableltem

«component» @
:Product

Figure 8.17 - An assembly connector maps a required interface of a component to a provided interface of another
component in a certain context (definition of components, e.g., in a library on the left, an assembly of those compo-
nents on the right).

In a system context where there are multiple components that provide or require a particular interface, a notation
abstraction can be used that combines by joining the multiple connectors. This abstraction is similar to the one defined for
aggregation and subtyping relationships.

«component»
@ Person
O— :BackOrder
OrderEntry
«component @ «component»
Person
O— :Order :Customer
OrderEntry Person

«component» @
:Organization

Note: Client interface is a subtype of Person interface

Figure 8.18 - As a notation abstraction, multiple wiring relationships can be visually grouped together in a component
assembly.

152 UML Superstructure Specification, v2.0

Changes from previous UML

The following changes from UML 1.x have been made — Connector is not defined in UML 1.4.
8.3.3 ConnectorKind (from BasicComponents)

Generalizations

None

Description

ConnectorKind is an enumeration of the following literal values:
e assembly Indicates that the connector is an assembly connector.

e delegation Indicates that the connector is a delegation connector.
8.3.4 Realization (from BasicComponents)

The Realization concept is specialized in the Components package to (optionally) define the Classifiers that realize the
contract offered by a component in terms of its provided and required interfaces. The component forms an abstraction
from these various Classifiers.

Generalizations

» “Realization (from Dependencies)” on page 124 (merge increment)

Description

In the metamodel, a Realization is a subtype of Dependencies::Realization.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

A component’s behavior may typically be realized (or implemented) by a number of Classifiers. In effect, it forms an
abstraction for a collection of model elements. In that case, a component owns a set of Realization Dependencies to these
Classifiers.

It should be noted that for the purpose of applications that require multiple different sets of realizations for a single
component specification, a set of standard stereotypes are defined in the UML Standard Profile. In particular,
«specification» and «realization» are defined there for this purpose.

UML Superstructure Specification, v2.0 153

Notation

A component realization is notated in the same way as the realization dependency (i.e., as a general dashed line with an

open arrow-head).

Changes from previous UML

The following changes from UML 1.x have been made: Realization is defined in UML 1.4 as a ‘free standing’ general
dependency - it is not extended to cover component realization specifically. These semantics have been made explicit in

UML 2.0.

8.4 Diagrams

Structure diagram

Graphical nodes

The graphic nodes that can be included in structure diagrams are shown in Table 8.1.

Table 8.1 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE
Component See “Component”
<<component>>
ComponentName

2

ComponentName

Component implements Interface

«component» @

C— Name

See “Interface”

Component has provided Port
(typed by Interface)

«component» @
Name

See “Port”

154

UML Superstructure Specification, v2.0

Table 8.1 - Graphic nodes included in structure diagrams

NODE TYPE NOTATION REFERENCE
Component uses Interface See “Interface”
«component»
D Name =l
Component has required Port (typed See “Port”
by Interface) «component» @
Name
Component has complex Port (typed See “Port”
by provided and required Interfaces) pro—
Name

Graphical paths
The graphic paths that can be included in structure diagrams are shown in Table 8.2.

Table 8.2 - Graphic nodes included in structure diagrams

PATH TYPE NOTATION REFERENCE

Assembly connector See “assembly connector.” Also used as notation option for
wiring between interfaces using Dependencies.

©

Variations

Variations of structure diagrams often focus on particular structural aspects, such as relationships between packages,
showing instance specifications, or relationships between classes. There are no strict boundaries between different
variations; it is possible to display any element you normally display in a structure diagram in any variation.

Component diagram
The following nodes and edges are typically drawn in a component diagram:

« Component
« Interface

UML Superstructure Specification, v2.0 155

 Realization, Interface Realization, Usage Dependencies
« Class

- Artifact

« Port

156 UML Superstructure Specification, v2.0

9 Composite Structures

9.1 Overview

The term “structure” in this chapter refers to a composition of interconnected elements, representing run-time instances
collaborating over communications links to achieve some common objectives.

Internal Structures

The InternalStructure subpackage provides mechanisms for specifying structures of interconnected elements that are
created within an instance of a containing classifier. A structure of this type represents a decomposition of that classifier
and is referred to as its “internal structure.”

Ports

The Ports subpackage provides mechanisms for isolating a classifier from its environment. This is achieved by providing
a point for conducting interactions between the internals of the classifier and its environment. This interaction point is
referred to as a “port.” Multiple ports can be defined for a classifier, enabling different interactions to be distinguished
based on the port through which they occur. By decoupling the internals of the classifier from its environment, ports allow
a classifier to be defined independently of its environment, making that classifier reusable in any environment that
conforms to the interaction constraints imposed by its ports.

Collaborations

Obijects in a system typically cooperate with each other to produce the behavior of a system. The behavior is the
functionality that the system is required to implement.

A behavior of a collaboration will eventually be exhibited by a set of cooperating instances (specified by classifiers) that
communicate with each other by sending signals or invoking operations. However, to understand the mechanisms used in
a design, it may be important to describe only those aspects of these classifiers and their interactions that are involved in
accomplishing a task or a related set of tasks, projected from these classifiers. Collaborations allow us to describe only
the relevant aspects of the cooperation of a set of instances by identifying the specific roles that the instances will play.
Interfaces allow the externally observable properties of an instance to be specified without determining the classifier that
will eventually be used to specify this instance. Consequentially, the roles in a collaboration will often be typed by
interfaces and will then prescribe properties that the participating instances must exhibit, but will not determine what class
will specify the participating instances.

StructuredClasses

The StructuredClasses subpackage supports the representation of classes that may have ports as well as internal structure.

Actions

The Actions subpackage adds actions that are specific to the features introduced by composite structures (e.g., the sending
of messages via ports).

9.2 Abstract syntax

Figure 9.1 shows the dependencies of the CompositeStructures packages.

UML Superstructure Specification, v2.0 157

Communications

<<JFerg9>
<<merge>>
—
Potts - —
[
TN
/ BasicActions
Z <<merge>>
<kmerge>>

—

/ <<merge>>

StructuredClasses

/
]

InvocationActions

—

7
J—
o
StructuredActivities
<<merge>>

AN

Figure 9.1 - Dependencies between packages described in this chapter

158

]

Interfaces

A

-

<<merge>>

Intemal Structures

\<<merge>>

Collaborations

|

‘<merge>>)

pa- |

StructuredActivities

UML Superstructure Specification, v2.0

Package InternalStructures

Classifier
(fromKemel)

]

StructuredClassifier

TypedElement

(fromKerel)

{union, subsets member}
+/role

ConnectableElement

* *

{ordered, subsets role,

I

subsets attribute,

Property
subsets ownedMember}
0.1 +ownedAttribute|
{subsets classifier} *
0.1 +/part
*
{subsets feature,
subsets ownedMember}
Connector

+ownedConnector

0.1

{subsets redefinitionContext}

Figure 9.2 - Structured classifier

ConnectableElement | 0..1

MultiplicityElement
(from Kemel)

Figure 9.3 - Connectors

*

+redefinedConnector

{subsets redefinedElement}

Feature
(fromKernel)

UML Superstructure Specification, v2.0

ConnectorEnd 2.* Connector
+role +end +end
{ordered} * | {ordered, subsets ownedElement} P
+/definingEnd 0.1 0.1, *type
Property Association

(from Kernel)

159

Package Ports

+partWithPort

Structured C assifier ConnectorEnd Property
(frominternal Structures) 01 (from Internal Structures)
+ownedPort Port
0.1 {subsets ownedAttribute} .
EncapsulatedClassifier isBehavior : Boolean = fa... +/required
{subsets redefinitionContext} * |isService : Boolean = true [- Interface
(fram Interfaces)
. +/provided
* * *

+redefinedPort
{subsets redefinedElement}

Figure 9.4 - The Port metaclass

Package StructuredClasses

EncapsulatedClassifier
(from Ports)

Class

Figure 9.5 - Classes with internal structure

160 UML Superstructure Specification, v2.0

Package Collaborations

ConnectableElement
(from InternalStructures)

StructuredClassifier
(from InternalStructures)

BehavioredClassifier
(from BasicBehaviors)

1

1

Parameter

Figure 9.6 - Collaboration

{subsets ownedElement}

Dependency

+roleBinding

+collaborationRole
{subsets role}

Collaboration

NanedElement
(from Kernel)

1

CollaborationUse

0.1

+collaborationUse

(from Dependencies) *

{subsets ownedElement}
0.1 0.1

+representation
{subsets occurrence}

Classifier

Figure 9.7 - Collaboration.use and role binding

UML Superstructure Specification, v2.0

1 +type

Collaboration

161

Package InvocationActions

+onPort 7 « * -
Port Trigger

* 0..1 (from Ports) +port

InvocationAction

Figure 9.8 - Actions specific to composite structures

Package StructuredActivities

ConnectableElement
frominternal Stuctures)

]

Variable

Figure 9.9 - Extension to Variable

9.3 Class Descriptions

9.3.1 Class (from StructuredClasses)

Generalizations

 “EncapsulatedClassifier (from Ports)” on page 173.

Description

Extends the metaclass Class with the capability to have an internal structure and ports.

Semantics

See “Property (from InternalStructures)” on page 179, “Connector (from InternalStructures)” on page 170, and “Port
(from Ports)” on page 175 for the semantics of the features of Class. Initialization of the internal structure of a class is
discussed in section “StructuredClassifier” on page 179.

A class acts as the namespace for various kinds of classifiers defined within its scope, including classes. Nesting of
classifiers limits the visibility of the classifier to within the scope of the namespace of the containing class and is used for
reasons of information hiding. Nested classifiers are used like any other classifier in the containing class.

Notation

See “Class (from Kernel)” on page 45, “StructuredClassifier” on page 179, and “Port” on page 175.

162 UML Superstructure Specification, v2.0

Presentation Options

A dashed arrow with an open arrowhead, optionally labeled with the keyword «create», may be used to relate an instance
value to a constructor for a class, describing the single value returned by the constructor, which must have the class as its
classifier. The arrowhead points at the operation defining the constructor. The constructor may reference parameters
declared by the operation. A constructor is any operation having a single return result parameter of the type of the owning
class. The instance value at the base of the arrow represents the default value of the single return result parameter of a
constructor.

Window

make (...) <=————+-—————- theW:Window
«create»

Figure 9.10 - Instance specification describes the return value of an operation

Changes from previous UML

Class has been extended with internal structure and ports.
9.3.2 Classifier (from Collaborations)

Generalizations

» 7.3.8, “Classifier (from Kernel, Dependencies, PowerTypes),” on page 48

Description

Classifier is extended with the capability to own collaboration uses. These collaboration uses link a collaboration with the
classifier to give a description of the workings of the classifier.

Associations

« collaborationUse: CollaborationUse References the collaboration uses owned by the classifier. (Subsets
Element.ownedElement)

* representation: CollaborationUse [0..1] References a collaboration use which indicates the collaboration that
represents this classifier. (Subsets Classifier.occurrence)

Semantics

A classifier can own collaboration uses that relate (aspects of) this classifier to a collaboration. The collaboration
describes those aspects of this classifier.

One of the collaboration uses owned by a classifier may be singled out as representing the behavior of the classifier as a
whole. The collaboration that is related to the classifier by this collaboration use shows how the instances corresponding
to the structural features of this classifier (e.g., its attributes and parts) interact to generate the overall behavior of the
classifier. The representing collaboration may be used to provide a description of the behavior of the classifier at a
different level of abstraction than is offered by the internal structure of the classifier. The properties of the classifier are
mapped to roles in the collaboration by the role bindings of the collaboration use.

UML Superstructure Specification, v2.0 163

Notation

See “CollaborationUse (from Collaborations)” on page 166

Changes from previous UML
Replaces and widens the applicability of Collaboration.usedCollaboration. Together with the newly introduced concept of
internal structure replaces Collaboration.representedClassifier.

9.3.3 Collaboration (from Collaborations)

A collaboration describes a structure of collaborating elements (roles), each performing a specialized function, which
collectively accomplish some desired functionality. Its primary purpose is to explain how a system works and, therefore,
it typically only incorporates those aspects of reality that are deemed relevant to the explanation. Thus, details, such as the
identity or precise class of the actual participating instances are suppressed.

Generalizations
- “BehavioredClassifier (from BasicBehaviors, Communications)” on page 419

« “StructuredClassifier (from InternalStructures)” on page 182

Description

A collaboration is represented as a kind of classifier and defines a set of cooperating entities to be played by instances (its
roles), as well as a set of connectors that define communication paths between the participating instances. The
cooperating entities are the properties of the collaboration (see “Property (from InternalStructures)” on page 179).

A collaboration specifies a view (or projection) of a set of cooperating classifiers. It describes the required links between
instances that play the roles of the collaboration, as well as the features required of the classifiers that specify the
participating instances. Several collaborations may describe different projections of the same set of classifiers.

Attributes

No additional attributes

Associations

« collaborationRole: ConnectableElement [*] References connectable elements (possibly owned by other classifiers),
which represent roles that instances may play in this collaboration.
(Subsets StructuredClassifier.role)

Constraints

No additional constraints

Semantics

Collaborations are generally used to explain how a collection of cooperating instances achieve a joint task or set of tasks.
Therefore, a collaboration typically incorporates only those aspects that are necessary for its explanation and suppresses
everything else. Thus, a given object may be simultaneously playing roles in multiple different collaborations, but each
collaboration would only represent those aspects of that object that are relevant to its purpose.

164 UML Superstructure Specification, v2.0

A collaboration defines a set of cooperating participants that are needed for a given task. The roles of a collaboration will
be played by instances when interacting with each other. Their relationships relevant for the given task are shown as
connectors between the roles. Roles of collaborations define a usage of instances, while the classifiers typing these roles
specify all required properties of these instances. Thus, a collaboration specifies what properties instances must have to be
able to participate in the collaboration. A role specifies (through its type) the required set of features a participating
instance must have. The connectors between the roles specify what communication paths must exist between the
participating instances.

Neither all features nor all contents of the participating instances nor all links between these instances are always required
in a particular collaboration. Therefore, a collaboration is often defined in terms of roles typed by interfaces (see
“Interface (from Interfaces)” on page 82). An interface is a description of a set of properties (externally observable
features) required or provided by an instance. An interface can be viewed as a projection of the externally observable
features of a classifier realizing the interface. Instances of different classifiers can play a role defined by a given interface,
as long as these classifiers realize the interface (i.e., have all the required properties). Several interfaces may be realized
by the same classifier, even in the same context, but their features may be different subsets of the features of the realizing
classifier.

Collaborations may be specialized from other collaborations. If a role is extended in the specialization, the type of a role
in the specialized collaboration must conform to the type of the role in the general collaboration. The specialization of the
types of the roles does not imply corresponding specialization of the classifiers that realize those roles. It is sufficient that
they conform to the constraints defined by those roles.

A collaboration may be attached to an operation or a classifier through a CollaborationUse. A collaboration used in this
way describes how this operation or this classifier is realized by a set of cooperating instances. The connectors defined
within the collaboration specify links between the instances when they perform the behavior specified in the classifier.
The collaboration specifies the context in which behavior is performed. Such a collaboration may constrain the set of
valid interactions that may occur between the instances that are connected by a link.

A collaboration is not directly instantiable. Instead, the cooperation defined by the collaboration comes about as a
consequence of the actual cooperation between the instances that play the roles defined in the collaboration (the
collaboration is a selective view of that situation).

Notation

A collaboration is shown as a dashed ellipse icon containing the name of the collaboration. The internal structure of a
collaboration as comprised by roles and connectors may be shown in a compartment within the dashed ellipse icon.
Alternatively, a composite structure diagram can be used.

- Observer — —
p - - - - - - - - - - - - - - - - - N
\ Subject : CallQueue Observer : SlidingBarlcon)
/
~
~ — P - -~

Figure 9.11 - The internal structure of the Observer collaboration shown inside the collaboration icon (a connection is
shown between the Subject and the Observer role).

UML Superstructure Specification, v2.0 165

Using an alternative notation for properties, a line may be drawn from the collaboration icon to each of the symbols
denoting classifiers that are the types of properties of the collaboration. Each line is labeled by the name of the property.
In this manner, a collaboration icon can show the use of a collaboration together with the actual classifiers that occur in
that particular use of the collaboration (see Figure 9.12).

CallQueue Subject idi
Q Observer SlidingBarlcon
queue: List of Call / reading: Real
source: Object \ Observer color: Color
waitAlarm: Alarm N / range: Interval
capacity: Integer - -

N

Observer.reading = length (Subject.queue)
Observer.range = (0 .. Subject.capacity)

Figure 9.12 - In the Observer collaboration two roles, a Subject and an Observer, collaborate to produce the desired
behavior. Any instance playing the Subject role must possess the properties specified by CallQueue, and similarly for
the Observer role.

Rationale

The primary purpose of collaborations is to explain how a system of communicating entities collectively accomplish a
specific task or set of tasks without necessarily having to incorporate detail that is irrelevant to the explanation. It is
particularly useful as a means for capturing standard design patterns.

Changes from previous UML

The contents of a collaboration is specified as its internal structure relying on roles and connectors; the concepts of
ClassifierRole, AssociationRole, and AssociationEndRole have been superseded. A collaboration in UML 2.0 is a kind of
classifier, and can have any kind of behavioral descriptions associated. There is no loss in modeling capabilities.

9.3.4 CollaborationUse (from Collaborations)

A collaboration use represents the application of the pattern described by a collaboration to a specific situation involving
specific classes or instances playing the roles of the collaboration.

Generalizations

« “NamedElement (from Kernel, Dependencies)” on page 93

Description

A collaboration use represents one particular use of a collaboration to explain the relationships between the properties of
a classifier. A collaboration use shows how the pattern described by a collaboration is applied in a given context, by
binding specific entities from that context to the roles of the collaboration. Depending on the context, these entities could

166 UML Superstructure Specification, v2.0

be structural features of a classifier, instance specifications, or even roles in some containing collaboration. There may be
multiple occurrences of a given collaboration within a classifier, each involving a different set of roles and connectors. A
given role or connector may be involved in multiple occurrences of the same or different collaborations.

Associated dependencies map features of the collaboration type to features in the classifier. These dependencies indicate
which role in the classifier plays which role in the collaboration.

Attributes

No additional attributes

Associations

e type: Collaboration [1] The collaboration that is used in this occurrence. The collaboration defines the
cooperation between its roles that are mapped to properties of the classifier owning the
collaboration use.

< roleBinding: Dependency [*] A mapping between features of the collaboration type and features of the classifier or
operation. This mapping indicates which connectable element of the classifier or operation
plays which role(s) in the collaboration. A connectable element may be bound to multiple
roles in the same collaboration use (that is, it may play multiple roles).

Constraints

[1] All the client elements of a roleBinding are in one classifier and all supplier elements of a roleBinding are in one
collaboration and they are compatible.

[2] Every role in the collaboration is bound within the collaboration use to a connectable element within the classifier or
operation.

[3] The connectors in the classifier connect according to the connectors in the collaboration.
Semantics

A collaboration use relates a feature in its collaboration type to a connectable element in the classifier or operation that
owns the collaboration use.

Any behavior attached to the collaboration type applies to the set of roles and connectors bound within a given
collaboration use. For example, an interaction among parts of a collaboration applies to the classifier parts bound to a
single collaboration use. If the same connectable element is used in both the collaboration and the represented element, no
role binding is required.

Semantic Variation Points

It is a semantic variation when client and supplier elements in role bindings are compatible.

Notation

A collaboration use is shown by a dashed ellipse containing the name of the occurrence, a colon, and the name of the
collaboration type. For every role binding, there is a dashed line from the ellipse to the client element; the dashed line is
labeled on the client end with the name of the supplier element.

UML Superstructure Specification, v2.0 167

Presentation Options

A dashed arrow with an open arrowhead may be used to show that a collaboration is used in a classifier, optionally
labeled with the keyword «represents». A dashed arrow with an open arrowhead may also be used to show that a
collaboration represents a classifier, optionally labeled with the keyword «occurrence». The arrowhead points at the
owning classifier. When using this presentation option, the role bindings are shown explicitly as dependencies.

Window T ST
. /~ :RealizeDisplay
display (...) D BN Behavior U/
«represents» S -

Figure 9.13 - Collaboration occurrence relates a classifier to a collaboration

Examples

This example shows the definition of two collaborations, Sale (Figure 9.14) and BrokeredSale (Figure 9.15). Sale is used
twice as part of the definition of BrokeredSale. Sale is a collaboration among two roles, a seller and a buyer. An
interaction, or other behavior specification, could be attached to Sale to specify the steps involved in making a Sale.

Figure 9.14 - The Sale collaboration

BrokeredSale is a collaboration among three roles, a producer, a broker, and a consumer. The specification of
BrokeredSale shows that it consists of two occurrences of the Sale collaboration, indicated by the dashed ellipses. The
occurrence wholesale indicates a Sale in which the producer is the seller and the broker is the buyer. The occurrence
retail indicates a Sale in which the broker is the seller and the consumer is the buyer. The connectors between sellers and
buyers are not shown in the two occurrences; these connectors are implicit in the BrokeredSale collaboration in virtue of
them being comprised of Sale. The BrokeredSale collaboration could itself be used as part of a larger collaboration.

168 UML Superstructure Specification, v2.0

7
7 7 wholesale: N

/ — S~ \
4 broker |— AN Sale SN~ \
, buyer T ~ ~ seller |

/ \
/ \ ~ \\

/ seller ‘
| \ producer |
\]
\ I

: \ ;
/

\
N ////J‘\\\ /

Ve . ~ /

N / retail: N /
Y N Sale ! e
~ S o< buyer e
N - — P
\\ I —_— //
~ —| consumer -

Figure 9.15 - The BrokeredSale collaboration

Figure 9.16 shows part of the BrokeredSale collaboration in a presentation option.

e «occurrence» e mT -
T \\\\ /,////////};7,/ ,,,,,, S 3[877777::>
_-~~ BrokeredSale = / N
———— e — = N /
e N \ buyer seller)
s N - e P
/ Y, S -
/ o \ e R -
/ broker |
|
N producer ¥/
\ i
\\ -
~N //
< P

Figure 9.16 - A subset of the BrokeredSale collaboration

Rationale

A collaboration use is used to specify the application of a pattern specified by a collaboration to a specific situation. In
that regard, it acts as the invocation of a macro with specific values used for the parameters (roles).

Changes from previous UML

This metaclass has been added.

UML Superstructure Specification, v2.0 169

9.3.5 ConnectableElement (from InternalStructures)

Generalizations

« “TypedElement (from Kernel)” on page 131

Description

A ConnectableElement is an abstract metaclass representing a set of instances that play roles of a classifier. Connectable
elements may be joined by attached connectors and specify configurations of linked instances to be created within an
instance of the containing classifier.

Attributes

No additional attributes

Associations
¢ end: ConnectorEnd Denotes a connector that attaches to this connectable element.
Constraints

No additional constraints

Semantics

The semantics of ConnectableElement is given by its concrete subtypes.

Notation

None

Rationale

This metaclass supports factoring out the ability of a model element to be linked by a connector.

Changes from previous UML

This metaclass generalizes the concept of classifier role from 1.x.
9.3.6 Connector (from InternalStructures)

Specifies a link that enables communication between two or more instances. This link may be an instance of an
association, or it may represent the possibility of the instances being able to communicate because their identities are
known by virtue of being passed in as parameters, held in variables or slots, or because the communicating instances are
the same instance. The link may be realized by something as simple as a pointer or by something as complex as a network
connection. In contrast to associations, which specify links between any instance of the associated classifiers, connectors
specify links between instances playing the connected parts only.

Generalizations

» “Feature (from Kernel)” on page 66

170 UML Superstructure Specification, v2.0

Description

Each connector may be attached to two or more connectable elements, each representing a set of instances. Each
connector end is distinct in the sense that it plays a distinct role in the communication realized over a connector. The
communications realized over a connector may be constrained by various constraints (including type constraints) that
apply to the attached connectable elements.

Attributes

No additional attributes

Associations

¢ end: ConnectorEnd [2..*]
A connector consists of at least two connector ends, each representing the participation of instances of the classifiers
typing the connectable elements attached to this end. The set of connector ends is ordered.
(SubsetsElement.ownedElement)

e type: Association [0..1]
An optional association that specifies the link corresponding to this connector.

¢ redefinedConnector: Connector [0..*]
A connector may be redefined when its containing classifier is specialized. The redefining connector may have a type that
specializes the type of the redefined connector. The types of the connector ends of the redefining connector may specialize
the types of the connector ends of the redefined connector. The properties of the connector ends of the redefining
connector may be replaced. (Subsets Element.redefinedElement)

Constraints

[1] The types of the connectable elements that the ends of a connector are attached to must conform to the types of the
association ends of the association that types the connector, if any.

[2] The connectable elements attached to the ends of a connector must be compatible.

[3] The ConnectableElements attached as roles to each ConnectorEnd owned by a Connector must be roles of the Classifier
that owned the Connector, or they must be ports of such roles.

Semantics

If a connector between two roles of a classifier is a feature of an instantiable classifier, it declares that a link may exist
within an instance of that classifier. If a connector between two roles of a classifier is a feature of an uninstantiable
classifier, it declares that links may exist within an instance of the classifier that realizes the original classifier. These
links will connect instances corresponding to the parts joined by the connector.

Links corresponding to connectors may be created upon the creation of the instance of the containing classifier (see
“StructuredClassifier” on page 179). The set of links is a subset of the total set of links specified by the association typing
the connector. All links are destroyed when the containing classifier instance is destroyed.

If the type of the connector is omitted, the type is inferred based on the connector, as follows: If the type of a role (i.e, the
connectable element attached to a connector end) realizes an interface that has a unique association to another interface

which is realized by the type of another role (or an interface compatible to that interface is realized by the type of another
role), then that association is the type of the connector between these parts. If the connector realizes a collaboration (that
is, a collaboration use maps the connector to a connector in an associated collaboration through role bindings), then the
type of the connector is an anonymous association with association ends corresponding to each connector end. The type
of each association end is the classifier that realizes the parts connected to the matching connector in the collaboration.

UML Superstructure Specification, v2.0 171

Any adornments on the connector ends (either the original connector or the connector in the collaboration) specify
adornments of the ends of the inferred association. Otherwise, the type of the connector is an anonymously named
association with association ends corresponding to each connector end. The type of each association end is the type of the
part that each corresponding connector end is attached to. Any adornments on the connector ends specify adornments of
the ends of the inferred association. Any inferred associations are always bidirectionally navigable and are owned by the
containing classifier.

Semantic Variation Points

What makes connectable elements compatible is a semantic variation point.

Notation

A connector is drawn using the notation for association (see “Association (from Kernel)” on page 36). The optional name
string of the connector obeys the following syntax:

([name] “:” <classname>) | <name>

where <name> is the name of the connector, and <classname> is the name of the association that is its type. A stereotype
keyword within guillemets may be placed above or in front of the connector name. A property string may be placed after
or below the connector name.

Examples

Examples are shown in “StructuredClassifier” on page 179.

Changes from previous UML

Connector has been added in UML 2.0. The UML 1.4 concept of association roles is subsumed by connectors.
9.3.7 ConnectorEnd (from InternalStructures, Ports)

Generalizations

- “MultiplicityElement (from Kernel)” on page 90

Description

A connector end is an endpoint of a connector, which attaches the connector to a connectable element. Each connector
end is part of one connector.

Attributes

No additional attributes
Associations

InternalStructures

* role: ConnectableElement [1] The connectable element attached at this connector end. When an instance of the
containing classifier is created, a link may (depending on the multiplicities) be
created to an instance of the classifier that types this connectable element.

172 UML Superstructure Specification, v2.0

e definingEnd: Property [0..1] A derived association referencing the corresponding association end on the
association that types the connector owing this connector end. This association is
derived by selecting the association end at the same place in the ordering of
association ends as this connector end.

Ports

e partWithPort: Property [0..1] Indicates the role of the internal structure of a classifier with the port to which the
connector end is attached.

Constraints
[1] If a connector end is attached to a port of the containing classifier, partWithPort will be empty.

[2] If a connector end references both a role and a partWithPort, then the role must be a port that is defined by the type of the
partWithPort.

[3] The property held in self.partWithPort must not be a Port.
Semantics

InternalStructures

A connector end describes which connectable element is attached to the connector owning that end. Its multiplicity
indicates the number of instances that may be linked to each instance of the property connected on the other end.

Notation

InternalStructures

Adornments may be shown on the connector end corresponding to adornments on association ends (see “Association
(from Kernel)” on page 36). These adornments specify properties of the association typing the connector. The multiplicity
indicates the number of instances that may be connected to each instance of the role on the other end. If no multiplicity is
specified, the multiplicity matches the multiplicity of the role the end is attached to.

Ports

If the end is attached to a port on a part of the internal structure and no multiplicity is specified, the multiplicity matches
the multiplicity of the port multiplied by the multiplicity of the part (if any).

Changes from previous UML

Connector end has been added in UML 2.0. The UML 1.4 concept of association end roles is subsumed by connector
ends.

9.3.8 EncapsulatedClassifier (from Ports)

Generalizations

» “StructuredClassifier (from InternalStructures)” on page 182

Description

Extends a classifier with the ability to own ports as specific and type checked interaction points.

UML Superstructure Specification, v2.0 173

Attributes

No additional attributes

Associations

e ownedPort: Port References a set of ports that an encapsulated classifier owns. (Subsets Classifier.feature and
Namespace.ownedMember)

Constraints

No additional constraints

Semantics

See “Port” on page 175.

Notation

See “Port” on page 175.

Changes from previous UML

This metaclass has been added to UML.
9.3.9 InvocationAction (from Actions)

Generalizations

« “InvocationAction (from BasicActions)” on page 249 (merge increment)

Description

In addition to targeting an object, invocation actions can also invoke behavioral features on ports from where the
invocation requests are routed onwards on links deriving from attached connectors. Invocation actions may also be sent to
a target via a given port, either on the sending object or on another object.

Associations

e onPort: Port [0..1] An optional port of the receiver object on which the behavioral feature is invoked.

Constraints
[1] The onPort must be a port on the receiver object.
Semantics

The target value of an invocation action may also be a port. In this case, the invocation request is sent to the object
owning this port as identified by the port identity, and is, upon arrival, handled as described in “Port” on page 175.

Notation

The optional port is identified by the phrase “via <port>" in the name string of the icon denoting the particular invocation
action (for example, see “CallOperationAction (from BasicActions)” on page 239).

174 UML Superstructure Specification, v2.0

9.3.10 Parameter (from Collaborations)

Generalizations
» “ConnectableElement (from InternalStructures)” on page 170

« “Parameter (from Kernel, AssociationClasses)” on page 115 (merge increment)

Description

Parameters are allowed to be treated as connectable elements.

Constraints

[1] A parameter may only be associated with a connector end within the context of a collaboration.
9.3.11 Port (from Ports)

A port is a property of a classifier that specifies a distinct interaction point between that classifier and its environment or
between the (behavior of the) classifier and its internal parts. Ports are connected to properties of the classifier by
connectors through which requests can be made to invoke the behavioral features of a classifier. A Port may specify the
services a classifier provides (offers) to its environment as well as the services that a classifier expects (requires) of its
environment.

Generalizations

» “Property (from InternalStructures)” on page 179

Description

Ports represent interaction points between a classifier and its environment. The interfaces associated with a port specify
the nature of the interactions that may occur over a port. The required interfaces of a port characterize the requests that
may be made from the classifier to its environment through this port. The provided interfaces of a port characterize
requests to the classifier that its environment may make through this port.

A port has the ability to specify that any requests arriving at this port are handled by the behavior of the instance of the
owning classifier, rather than being forwarded to any contained instances, if any.

Attributes

e isService: Boolean
If true, indicates that this port is used to provide the published functionality of a classifier. If false, this port is used to
implement the classifier but is not part of the essential externally-visible functionality of the classifier and can, therefore,
be altered or deleted along with the internal implementation of the classifier and other properties that are considered part
of its implementation. The default value for this attribute is true.

e isBehavior: Boolean
Specifies whether requests arriving at this port are sent to the classifier behavior of this classifier (see
“BehavioredClassifier (from BasicBehaviors, Communications)” on page 419). Such ports are referred to as behavior
port. Any invocation of a behavioral feature targeted at a behavior port will be handled by the instance of the owning
classifier itself, rather than by any instances that this classifier may contain. The default value is false.

UML Superstructure Specification, v2.0 175

Associations

e required: Interface
References the interfaces specifying the set of operations and receptions that the classifier expects its environment to
handle. This association is derived as the set of interfaces required by the type of the port or its supertypes.

e provided: Interface
References the interfaces specifying the set of operations and receptions that the classifier offers to its environment, and
which it will handle either directly or by forwarding it to a part of its internal structure. This association is derived from
the interfaces realized by the type of the port or by the type of the port, if the port was typed by an interface.

e redefinedPort: Port
A port may be redefined when its containing classifier is specialized. The redefining port may have additional interfaces
to those that are associated with the redefined port or it may replace an interface by one of its subtypes. (Subsets
Element.redefinedElement)

Constraints

[1] The required interfaces of a port must be provided by elements to which the port is connected.
[2] Port.aggregation must be composite.

[3] When a port is destroyed, all connectors attached to this port will be destroyed also.

[4] A defaultValue for port cannot be specified when the type of the Port is an Interface.

Semantics

A port represents an interaction point between a classifier instance and its environment or between a classifier instance
and instances it may contain. A port by default has public visibility. However, a behavior port may be hidden but does not
have to be.

The required interfaces characterize services that the owning classifier expects from its environment and that it may
access through this interaction point: Instances of this classifier expect that the features owned by its required interfaces
will be offered by one or more instances in its environment. The provided interfaces characterize the behavioral features
that the owning classifier offers to its environment at this interaction point. The owning classifier must offer the features
owned by the provided interfaces.

The provided and required interfaces completely characterize any interaction that may occur between a classifier and its
environment at a port with respect to the data communicated at this port and the behaviors that may be invoked through
this port. The interfaces do not necessarily establish the exact sequences of interactions across the port. When an instance
of a classifier is created, instances corresponding to each of its ports are created and held in the slots specified by the
ports, in accordance with its multiplicity. These instances are referred to as “interaction points” and provide unique
references. A link from that instance to the instance of the owning classifier is created through which communication is
forwarded to the instance of the owning classifier or through which the owning classifier communicates with its
environment. It is, therefore, possible for an instance to differentiate between requests for the invocation of a behavioral
feature targeted at its different ports. Similarly, it is possible to direct such requests at a port, and the requests will be
routed as specified by the links corresponding to connectors attached to this port. (In the following, “requests arriving at
a port” shall mean “request occurrences arriving at the interaction point of this instance corresponding to this port.”)

The interaction point object must be an instance of a classifier that realizes the provided interfaces of the port. If the port
was typed by an interface, the classifier typing the interaction point object realizes that interface. If the port was typed by
a class, the interaction point object will be an instance of that class. The latter case allows elaborate specification of the
communication over a port. For example, it may describe that communication is filtered, modified in some way, or routed
to other parts depending on its contents as specified by the classifier that types the port.

176 UML Superstructure Specification, v2.0

If connectors are attached to both the port when used on a property within the internal structure of a classifier and the port
on the container of an internal structure, the instance of the owning classifier will forward any requests arriving at this
port along the link specified by those connectors. If there is a connector attached to only one side of a port, any requests
arriving at this port will terminate at this port.

For a behavior port, the instance of the owning classifier will handle requests arriving at this port (as specified in the
behavior of the classifier, see Chapter 13, “Common Behaviors”), if this classifier has any behavior. If there is no
behavior defined for this classifier, any communication arriving at a behavior port is lost.

Semantic Variation Points

If several connectors are attached on one side of a port, then any request arriving at this port on a link derived from a
connector on the other side of the port will be forwarded on links corresponding to these connectors. It is a semantic
variation point whether these requests will be forwarded on all links, or on only one of those links. In the latter case, one
possibility is that the link at which this request will be forwarded will be arbitrarily selected among those links leading to
an instance that had been specified as being able to handle this request (i.e., this request is specified in a provided
interface of the part corresponding to this instance).

Notation

A port of a classifier is shown as a small square symbol. The name of the port is placed near the square symbol. If the
port symbol is placed overlapping the boundary of the rectangle symbol denoting that classifier this port is exposed (i.e.,
its visibility is public). If the port is shown inside the rectangle symbol, then the port is hidden and its visibility is as
specified (it is protected by default).

A port of a classifier may also be shown as a small square symbol overlapping the boundary of the rectangle symbol
denoting a part typed by that classifier (see Figure 9.17). The name of the port is shown near the port; the multiplicity
follows the name surrounded by brackets. Name and multiplicity may be elided.

The type of a port may be shown following the port name, separated by colon (“:”). A provided interface may be shown
using the “lollipop” notation (see “Interface (from Interfaces)” on page 82) attached to the port. A required interface may
be shown by the “socket” notation attached to the port. The presentation options shown there are also applicable to
interfaces of ports. Figure 9.17 shows the notation for ports: p is a port on the Engine class. The provided interface (also
its type) of port p is powertrain. The multiplicity of p is “1.” In addition, a required interface, power, is shown also. The
figure on the left shows the provided interface using the “lollipop” notation, while the figure on the right shows the
interface as the type of the port.

_ Engine Engine
powertrain
p[1] p: powertrain [1]
?] ol
power power

Figure 9.17 - Port notation

UML Superstructure Specification, v2.0 177

A behavior port is indicated by a port being connected through a line to a small state symbol drawn inside the symbol
representing the containing classifier. (The small state symbol indicates the behavior of the containing classifier.) Figure
9.18 shows the behavior port p, as indicated by its connection to the state symbol representing the behavior of the Engine
class. Its provided interface is powertrain. In addition, a required interface, power, is shown also.

Engine
powertrain
C%>pt
power

Figure 9.18 - Behavior port notation

Presentation Options
The name of a port may be suppressed. Every depiction of an unnamed port denotes a different port from any other port.

If there are multiple interfaces associated with a port, these interfaces may be listed with the interface icon, separated by
commas. Figure 9.19 below shows a port OnlineServices on the OrderProcess class with two provided interfaces,
OrderEntry and Tracking, as well as a required interface Payment.

OrderProcess

Payment

Figure 9.19 - Port notation showing multiple provided interfaces

178 UML Superstructure Specification, v2.0

Examples

powertrain Engine Car

p

axle p
’) rear : Wheel [2] e: Engine
power

<<interface>>
powertrain

Boat

shaft p _
<<interface>> : Propeller e: Engine
power

Figure 9.20 - Port examples

Figure 9.20 shows a class Engine with a port p with a provided interface powertrain. This interface specifies the services
that the engine offers at this port (i.e., the operations and receptions that are accessible by communication arriving at this
port). The interface power is the required interface of the engine. The required interface specifies the services that the
engine expects its environment to provide. At port p, the Engine class is completely encapsulated; it can be specified
without any knowledge of the environment the engine will be embedded in. As long as the environment obeys the
constraints expressed by the provided and required interfaces of the engine, the engine will function properly.

Two uses of the Engine class are depicted: Both a boat and a car contain a part that is an engine. The Car class connects
port p of the engine to a set of wheels via the axle. The Boat class connects port p of the engine to a propeller via the

shaft. As long as the interaction between the Engine and the part linked to its port p obeys the constraints specified by the
provided and required interfaces, the engine will function as specified, whether it is an engine of a car or an engine of a
boat. (This example also shows that connectors need not necessarily attach to parts via ports (as shown in the Car class.)

Rationale

The required and provided interfaces of a port specify everything that is necessary for interactions through that interaction
point. If all interactions of a classifier with its environment are achieved through ports, then the internals of the classifier
are fully isolated from the environment. This allows such a classifier to be used in any context that satisfies the
constraints specified by its ports.

Changes from previous UML

This metaclass has been added to UML.
9.3.12 Property (from InternalStructures)

Generalizations

« “Property (from Kernel, AssociationClasses)” on page 118 (merge increment)

UML Superstructure Specification, v2.0 179

Description

A property represents a set of instances that are owned by a containing classifier instance.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

When an instance of the containing classifier is created, a set of instances corresponding to its properties may be created
either immediately or at some later time. These instances are instances of the classifier typing the property. A property
specifies that a set of instances may exist; this set of instances is a subset of the total set of instances specified by the
classifier typing the property.

A part declares that an instance of this classifier may contain a set of instances by composition. All such instances are
destroyed when the containing classifier instance is destroyed. Figure 9.21 shows two possible views of the Car class. In
subfigure (i), Car is shown as having a composition association with role name rear to a class Wheel and an association
with role name e to a class Engine. In subfigure (ii), the same is specified. However, in addition, in subfigure (ii) it is
specified that rear and e belong to the internal structure of the class Car. This allows specification of detail that holds
only for instances of the Wheel and Engine classes within the context of the class Car, but which will not hold for wheels
and engines in general. For example, subfigure (i) specifies that any instance of class Engine can be linked to an arbitrary
number of instances of class Wheel. Subfigure (ii), however, specifies that within the context of class Car, the instance
playing the role of e may only be connected to two instances playing the role of rear. In addition, the instances playing
the e and rear roles may only be linked if they are roles of the same instance of class Car.

In other words, subfigure (ii) asserts additional constraints on the instances of the classes Wheel and Engine, when they
are playing the respective roles within an instance of class Car. These constraints are not true for instances of Wheel and
Engine in general. Other wheels and engines may be arbitrarily linked as specified in subfigure (i).

180 UML Superstructure Specification, v2.0

Car

Car

e
rear 2 1 e a: Axle ! }
rear : Wheel [2] ———— e: Engine }
Wheel Axle Engine 2 1 [
e
* *
. ii
0 (i)

Figure 9.21 - Properties

Notation

A part is shown by graphical nesting of a box symbol with a solid outline representing the part within the symbol
representing the containing classifier in a separate compartment. A property specifying an instance that is not owned by
composition by the instance of the containing classifier is shown by graphical nesting of a box symbol with a dashed
outline.

The contained box symbol has only a name compartment, which contains a string according to the syntax defined in the
Notation subsection of “Property (from Kernel, AssociationClasses)” on page 118. Detail may be shown within the box
symbol indicating specific values for properties of the type classifier when instances corresponding to the property
symbol are created.

Presentation Options
The multiplicity for a property may also be shown as a multiplicity mark in the top right corner of the part box.

A property symbol may be shown containing just a single name (without the colon) in its name string. This implies the
definition of an anonymously named class nested within the namespace of the containing class. The part has this
anonymous class as its type. Every occurrence of an anonymous class is different from any other occurrence. The
anonymously defined class has the properties specified with the part symbol. It is allowed to show compartments defining
attributes and operations of the anonymously named class.

UML Superstructure Specification, v2.0 181

Examples

w: Wheel

Figure 9.22 - Property examples

Figure 9.22 shows examples of properties. On the left, the property denotes that the containing instance will own four
instances of the Wheel class by composition. The multiplicity is shown using the presentation option discussed above. The
property on the right denotes that the containing instance will reference one or two instances of the Engine class. For
additional examples, see 9.3.13, “StructuredClassifier (from InternalStructures),” on page 182.

Changes from previous UML

A connectable element used in a collaboration subsumes the concept of ClassifierRole.
9.3.13 StructuredClassifier (from InternalStructures)

Generalizations

» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 48

Description

A structured classifier is an abstract metaclass that represents any classifier whose behavior can be fully or partly
described by the collaboration of owned or referenced instances.

Attributes

No additional attributes

Associations

e role: ConnectableElement References the roles that instances may play in this classifier. (Abstract union; subsets
Classifier.feature)

« ownedAttribute: Property References the properties owned by the classifier. (Subsets StructuredClassifier.role,
Classifier.attribute, and Namespace.ownedMember)

e part: Property References the properties specifying instances that the classifier owns by
composition. This association is derived, selecting those owned properties where
isComposite is true.

e ownedConnector: Connector References the connectors owned by the classifier. (Subsets Classifier.feature and
Namespace.ownedMember)

Constraints

[1] The multiplicities on connected elements must be consistent.

182 UML Superstructure Specification, v2.0

Semantics

The multiplicities on the structural features and connector ends indicate the number of instances (objects and links) that
may be created within an instance of the containing classifier, either when the instance of the containing classifier is
created, or at a later time. The lower bound of the multiplicity range indicates the number of instances that are created
(unless indicated differently by an associated instance specification or an invoked constructor function); the upper bound
of the multiplicity range indicates the maximum number of instances that may be created. The slots corresponding to the
structural features are initialized with these instances.

The manner of creation of the containing classifier may override the default instantiation. When an instance specification
is used to specify the initial instance to be created for a classifier (see “Class” on page 162), the multiplicities of its parts
determine the number of initial instances that will be created within that classifier. Initially, there will be as many
instances held in slots as indicated by the corresponding multiplicity. Multiplicity ranges on such instance specifications
may not contain upper bounds.

All instances corresponding to parts of a structured classifier are destroyed recursively, when an instance of that
structured classifier is deleted. The instance is removed from the extent of its classifier, and is itself destroyed.

Semantic Variation Points

The rules for matching the multiplicities of connector ends and those of parts and ports they interconnect are a semantic
variation point. Also, the specific topology that results from such multi-connectors will differ from system to system. One
possible approach to this is illustrated in Figure 9.23and Figure 9.24.

For each instance playing a role in an internal structure, there will initially be as many links as indicated by the
multiplicity of the opposite ends of connectors attached to that role (see “ConnectorEnd” on page 172 for the semantics
where no multiplicities are given for an end). If the multiplicities of the ends match the multiplicities of the roles they are
attached to (see Figure 9.23 i), the initial configuration that will be created when an instance of the containing classifier
is created consists of the set of instances corresponding to the roles (as specified by the multiplicities on the roles) fully
connected by links (see the resultant instance, Figure 9.23 ii).

0] 2 2
a b:
2 2
(if)
La [b:
[a /b

Figure 9.23 - “Star” connector pattern

Multiplicities on connector ends serve to restrict the number of initial links created. Links will be created for each
instance playing the connected roles according to their ordering until the minimum connector end multiplicity is reached
for both ends of the connector (see the resultant instance, Figure 9.24 ii). In this example, only two links are created,
resulting in an array pattern.

UML Superstructure Specification, v2.0 183

0

(ii)

Figure 9.24 - “Array” connector pattern

Notation

The namestring of a role in an instance specification obeys the following syntax:

la:

{<name> [‘/’ <rolename>] | ‘/" <rolename>} [‘:” <classifiername> [*,” <classifiername>]*]

The name of the instance specification may be followed by the name of the part that the instance plays. The name of the
part may only be present if the instance plays a role.

Examples

The following example shows two classes, Car and Wheel. The Car class has four parts, all of type Wheel, representing
the four wheels of the car. The front wheels and the rear wheels are linked via a connector representing the front and rear
axle, respectively. An implicit association is defined as the type of each axle with each end typed by the Wheel class.

Figure 9.25 specifies that whenever an instance of the Car class is created, four instances of the Wheel class are created
and held by composition within the car instance. In addition, one link each is created between the front wheel instances

and the rear wheel instances.

Figure 9.25 - Connectors and parts in a structure diagram

184

Wheel

Car
leftFront : frontaxie rightFront :
Wheel Wheel
leftRear : rearade rightRear :
Wheel Wheel

tire: String
size: String

UML Superstructure Specification, v2.0

Figure 9.26 specifies an equivalent system, but relies on multiplicities to show the replication of the wheel and axle
arrangement. This diagram specifies that there will be two instances of the left wheel and two instances of the right
wheel, with each matching instance connected by a link deriving from the connector representing the axle. As specified
by the multiplicities, no additional instances of the Wheel class can be added as left or right parts for a Car instance.

Car Wheel
tire: String
size: String

axle
left: Wheel [2] right: Wheel [2]
1

Figure 9.26 - Connectors and parts in a structure diagram using multiplicities

Figure 9.27 shows an instance of the Car class (as specified in Figure 9.25). It describes the internal structure of the Car
that it creates and how the four contained instances of Wheel will be initialized. In this case, every instance of Wheel will
have the predefined size and use the brand of tire as specified. The left wheel instances are given names, and all wheel
instances are shown as playing the respective roles. The types of the wheel instances have been suppressed.

Car Wheel
tire: String
11/ leftfront frontaxie Lrightfront size: String
tire = "Michelin" tire = "Michelin"
size = "215x95" size = "215x95"
12/ leftrear rearaxle Lrightrear Car
tire = "Firestone" tire = "Firestone"
size ="215x95" size = "215x95"

Figure 9.27 - A instance of the Car class

Finally, Figure 9.28 shows a constructor for the Car class (see “Class” on page 162). This constructor takes a parameter
brand of type String. It describes the internal structure of the Car that it creates and how the four contained instances of
Wheel will be initialized. In this case, every instance of Wheel will have the predefined size and use the brand of tire
passed as parameter. The left wheel instances are given names, and all wheel instances are shown as playing the parts.
The types of the wheel instances have been suppressed.

UML Superstructure Specification, v2.0 185

: Car
Car
«create» 11 / leftfront frontaxle Lrightfront
make(brand:String) ; :
tire = brand tire = brand
size = "215x95" size = "215x95"
12 / leftrear rearaxle Lrightrear
tire = brand tire = brand
size = "215x95" size = "215x95"
Figure 9.28 - A constructor for the Car class
9.3.14 Trigger (from InvocationActions)
Generalizations
« “Trigger (from Communications)” on page 441 (merge increment)
Description
A trigger specification may be qualified by the port on which the event occurred.
Associations
e port: Port [*] Specifies the ports at which a communication that caused an event may have arrived.

Semantics

Specifying one or more ports for an event implies that the event triggers the execution of an associated behavior only if
the event was received via one of the specified ports.

Notation

The ports of a trigger are specified following a trigger signature by a list of port names separated by comma, preceded by
the keyword «from»:

‘«from»’ <port-name> [*,” <port-name>]*
9.3.15 Variable (from StructuredActivities)

Generalizations

« “Variable (from StructuredActivities)” on page 401 (merge increment)

Description

A variable is considered a connectable element.

186 UML Superstructure Specification, v2.0

Semantics

Extends variable to specialize connectable element.

9.4 Diagrams

Composite structure diagram

A composite structure diagram depicts the internal structure of a classifier, as well as the use of a collaboration in a

collaboration use.

Graphical nodes

Additional graphical nodes that can be included in composite structure diagrams are shown in Table 9.1.

Table 9.1 - Graphic nodes included in composite structure diagrams

ClassifierName

Node Type Notation Reference
Part See “Property (from InternalStructures)” on page 179.
partName :
ClassName
Port See “Ports” on page 175. A port may appear either on a contained
part representing a port on that part, or on the boundary of the class
portName: diagram, representing a port on the represented classifier itself.

The optional ClassifierName is only used if it is desired to specify
a class of an object that implements the port.

Collaboration

——

e N
(CollaborationName
~ /
-~

~ —_— -

See “Collaboration” on page 164.

CollaborationUse

——

e ~
(usageName : N\
\OollaborationName /

\—-//

See “CollaborationUse (from Collaborations)” on page 166.

UML Superstructure Specification, v2.0

187

Graphical paths

Additional graphical paths that can be included in composite structure diagrams are shown in Table 9.2.

Table 9.2 - Graphic nodes included in composite structure diagrams

Path Type Notation Reference

Connector See “Connector” on page 170.

Role binding See “CollaborationUse (from Collaborations)” on
page 166.

Structure diagram

All graphical nodes and paths shown on composite structure diagrams can also be shown on other structure diagrams.

188

UML Superstructure Specification, v2.0

10 Deployments

10.1 Overview

The Deployments package specifies a set of constructs that can be used to define the execution architecture of systems
that represent the assignment of software artifacts to nodes. Nodes are connected through communication paths to create
network systems of arbitrary complexity. Nodes are typically defined in a nested manner, and represent either hardware
devices or software execution environments. Artifacts represent concrete elements in the physical world that are the result
of a development process.

The Deployment package supports a streamlined model of deployment that is deemed sufficient for the majority of
modern applications. Where more elaborate deployment models are required, it can be extended through profiles or meta
models to model specific hardware and software environments.

Artifacts

The Artifacts package defines the basic Artifact construct as a special kind of Classifier.

Nodes

The Nodes package defines the concept of Node, as well as the basic deployment relationship between Artifacts and
Nodes.

Component Deployments

The ComponentDeployments package extends the basic deployment model with capabilities to support deployment
mechanisms found in several common component technologies.

10.2 Abstract syntax

Figure 10.1 shows the dependencies of the Deployments packages.

UML Superstructure Specification, v2.0 189

Figure 10.1 - Dependencies between packages described in this chapter

190

]

Dependencies

i

—

Artifacts

<<merge>>

I

StructuredCl asses

<<merge>>

A |

AN

<<merge>>

ComponentDeployments

UML Superstructure Specification, v2.0

Package Artifacts

+nestedArti fact
{subsets owned me mber}

Classifier
(from Dependencies)

Abdraction
(from Dependencies)

{subsets ownedElement,

subsets clientDe pend ency}

Manifestation

+utilizedElement

{subsets supplier,
subsets targe t}

{ordered, subsets attribute, subsets ownedMember}

Artifact +manifestation
fileName : String L 2
0.1 0.1 1
{subsets namespace,
{ordered, subsets featuringClassifier,
sub sets feature, subsets d assifier}
sub sets ownedM em be i} .
+ownedOperation * » | ownedAttribute
Operation Property

(from Kernel)

(from Kernel)

Figure 10.2 - The elements defined in the Artifacts package

Package Nodes

Class

(from StructuredClass...

+nestedNode

{redefines nestedClassifier}

*

Node

.

Device

ExecutionEnvironment

Figure 10.3 - The definition of the Node concept

UML Superstructure Specification, v2.0

Association

(from Kern...

CommunicationPath

{ All ends of a CommunicationPath
are ty ped by Deploy mentTargets}

1

PackageableElement
(fromKerrel)

191

NamedElement
(fromDependenci es)

+/deployedElement

DeploymentTarget

A

Node Propetty InstanceSpecification

Figure 10.4 - Definition of the Deployment relationship between DeploymentTargets and DeployedArtifacts

Dependency
(fromDependencies)

NamedElement
(fromD ependendies)

A {subsets supplier, A

subsets target}
DeployedAttifact

+deployedArtifact

{subse ts ownedElement,
subsets clientDependency}
location +deployment

PackageableElement

Deployment
1 {subsetssource, *

subsets client}

Package ComponentDeployments

Artifact
(from Artifacts)
+configuration
Deployment @ DeploymentSpecification
0.1 {subsets ownedElement} « [deploymentLocation : String
executionLocation : String

{the deployment target of a
DeploymentSpecification is of type
ExecutionEnvironment }

{the utilized elements of a
DeploymentSpecification are of type
Component }

Figure 10.5 - Metaclasses that define component Deployment

10.3 Class Descriptions

10.3.1 Artifact (from Artifacts, Nodes)

An artifact is the specification of a physical piece of information that is used or produced by a software development process,

or by deployment and operation of a system. Examples of artifacts include model files, source files, scripts, and binary
executable files, a table in a database system, a development deliverable, or a word-processing document, a mail message.

192 UML Superstructure Specification, v2.0

Generalizations
» “Classifier (from Kernel, Dependencies, PowerTypes)” on page 48

» “DeployedArtifact (from Nodes)” on page 195
Description

Package Artifacts

In the metamodel, an Artifact is a Classifier that represents a physical entity. Artifacts may have Properties that represent
features of the Artifact, and Operations that can be performed on its instances. Artifacts can be involved in Associations to
other Artifacts (e.g., composition associations). Artifacts can be instantiated to represent detailed copy semantics, where
different instances of the same Artifact may be deployed to various Node instances (and each may have separate property
values, e.g., for a ‘time-stamp’ property).

Package Node

As part of the Nodes package, an Artifact is extended to become the source of a deployment to a Node. This is achieved by
specializing the abstract superclass DeployedArtifact defined in the Nodes package.

Attributes

Package Artifacts
e filename : String [0..1] A concrete name that is used to refer to the Artifact in a physical context. Example: file
system name, universal resource locator.

Associations

Package Artifacts

e nestedArtifact: Artifact [*] The Artifacts that are defined (nested) within the Artifact. The association is a
specialization of the ownedMember association from Namespace to NamedElement.

e ownedProperty : Property [*] The attributes or association ends defined for the Artifact. The association is a
specialization of the ownedMember association.

e ownedOperation : Operation [*] The Operations defined for the Artifact. The association is a specialization of the
ownedMember association.

¢ manifestation : Manifestation [*] The set of model elements that are manifested in the Artifact. That is, these model
elements are utilized in the construction (or generation) of the artifact. This
association is a specialization of the clientDependency association.

Constraints

No additional constraints

UML Superstructure Specification, v2.0 193

Semantics

An Artifact defined by the user represents a concrete element in the physical world. A particular instance (or ‘copy’) of
an artifact is deployed to a node instance. Artifacts may have composition associations to other artifacts that are nested
within it. For instance, a deployment descriptor artifact for a component may be contained within the artifact that
implements that component. In that way, the component and its descriptor are deployed to a node instance as one artifact
instance.

Specific profiles are expected to stereotype artifact to model sets of files (e.g., as characterized by a ‘file extension’ on a
file system). The UML Standard Profile defines several standard stereotypes that apply to Artifacts, e.g., «source» or
«executable» (See Annex C - Standard Stereotypes). These stereotypes can be further specialized into implementation and
platform specific stereotypes in profiles. For example, an EJB profile might define «jar» as a subclass of «executable» for
executable Java archives.

Notation

An artifact is presented using an ordinary class rectangle with the key-word «artifact». Alternatively, it may be depicted
by an icon.

Optionally, the underlining of the name of an artifact instance may be omitted, as the context is assumed to be known to
users.

«artifact» |
Order.jar

Figure 10.6 - An Artifact instance

«component» @
Oi Order

A

! «manifest»

«artifact»>)
Order.jar

Figure 10.7 - A visual representation of the manifestation relationship between artifacts and components

Changes from previous UML

The following changes from UML 1.x have been made: Artifacts can now manifest any PackageableElement (not just
Components, as in UML 1.x).

194 UML Superstructure Specification, v2.0

10.3.2 CommunicationPath (from Nodes)

A communication path is an association between two DeploymentTargets, through which they are able to exchange
signals and messages.

Generalizations

« “Association (from Kernel)” on page 36

Description

In the metamodel, CommunicationPath is a subclass of Association.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] The association ends of a CommunicationPath are typed by DeploymentTargets.

Semantics

A communication path is an association that can only be defined between deployment targets, to model the exchange of
signals and messages between them.

Notation

No additional notation

Changes from previous UML

The following changes from UML 1.x have been made: CommunicationPath was implicit in UML 1.x. It has been made
explicit to formalize the modeling of networks of complex Nodes.

10.3.3 DeployedArtifact (from Nodes)

A deployed artifact is an artifact or artifact instance that has been deployed to a deployment target.

Generalizations

« “NamedElement (from Kernel, Dependencies)” on page 93

Description

In the metamodel, DeployedArtifact is an abstract metaclass that is a specialization of NamedElement. A
DeployedArtifact is involved in one or more Deployments to a DeploymentTarget.

UML Superstructure Specification, v2.0 195

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

Deployed artifacts are deployed to a deployment target.

Notation

No additional notation

Changes from previous UML

The following changes from UML 1.x have been made: The capability to deploy artifacts and artifact instances to nodes
has been made explicit based on UML 2.0 instance modeling through the addition of this abstract metaclass.

10.3.4 Deployment (from ComponentDeployments, Nodes)

Package Nodes

A deployment is the allocation of an artifact or artifact instance to a deployment target.

Package ComponentDeployments

A component deployment is the deployment of one or more artifacts or artifact instances to a deployment target,
optionally parameterized by a deployment specification. Examples are executables and configuration files.

Generalizations

» “Dependency (from Dependencies)” on page 58

Description

In the metamodel, Deployment is a subtype of Dependency.

Attribute

No additional attributes
Associations

Package Nodes

« deployedArtifact : Artifact [*] The Artifacts that are deployed onto a Node. This association specializes the supplier
association.

196 UML Superstructure Specification, v2.0

e location : Node [1] The Node which is the target of a Deployment. This association specializes the client association.

Package ComponentDeployments

e configuration : deploymentSpecification [*] The specification of properties that parameterize the deployment and
execution of one or more Artifacts. This association is specialized from
the ownedMember association.

Constraints

No additional constraints

Semantics

The deployment relationship between a DeployedArtifact and a DeploymentTarget can be defined at the “type” level and
at the “instance level.” For example, a ‘type level’ deployment relationship can be defined between an “application
server” Node and an “order entry request handler” executable Artifact. At the ‘instance level’ 3 specific instances “app-
serverl” ... “app-server3” may be the deployment target for six “request handler*” instances. Finally, for modeling
complex deployment target models consisting of nodes with a composite structure defined through ‘parts,” a Property
(that functions as a part) may also be the target of a deployment.

Notation

Deployment diagrams show the allocation of Artifacts to Nodes according to the Deployments defined between them.

:AppServerl
«artifact» 0 «artifact» 0
ShoppinCart.jar P = = S Order .jar

Figure 10.8 - A visual representation of the deployment location of artifacts (including a dependency between the
artifacts).

An alternative notation to containing the deployed artifacts within a deployment target symbol is to use a dependency
labeled «deploy» that is drawn from the artifact to the deployment target.

UML Superstructure Specification, v2.0 197

:AppServerl

4 ﬂ v N
, d N N
«deploy» 7 “\ «deploy»
Y 4 N N
d 7 N
«artifact») «artifact» [
ShoppinCart.jar Order jar

Figure 10.9 - Alternative deployment representation of using a dependency called «deploy»

:AppServerl

Order.jar
ShoppingCart.jar
Account.jar

Product.jar

BackOrder.jar

Service.jar

Figure 10.10 - Textual list based representation of the deployment location of artifacts

Changes from previous UML

The following changes from UML 1.x have been made — an association to DeploymentSpecification has been added.
10.3.5 DeploymentSpecification (from ComponentDeployments)

A deployment specification specifies a set of properties that determine execution parameters of a component artifact that
is deployed on a node. A deployment specification can be aimed at a specific type of container. An artifact that reifies or
implements deployment specification properties is a deployment descriptor.

Generalizations

« “Artifact (from Artifacts, Nodes)” on page 192

Description

In the metamodel, a DeploymentSpecification is a subtype of Artifact. It defines a set of deployment properties that are
specific to a certain Container type. An instance of a DeploymentSpecification with specific values for these properties
may be contained in a complex Artifact.

198 UML Superstructure Specification, v2.0

Attributes

ComponentDeployments Package

e deploymentLocation : String The location where an Artifact is deployed onto a Node. This is typically a ‘directory’
or 'memory address.'

e executionLocation : String The location where a component Artifact executes. This may be a local or remote
location.

Associations

ComponentDeployments Package

e deployment : Deployment [0..1] The deployment with which the DeploymentSpecification is associated.

Constraints
[1] The DeploymentTarget of a DeploymentSpecification is a kind of ExecutionEnvironment.

[2] The deployedElements of a DeploymentTarget that are involved in a Deployment that has an associated
DeploymentSpecification is a kind of Component (i.e., the configured components).

Semantics

A Deployment specification is a general mechanism to parameterize a Deployment relationship, as is common in various
hardware and software technologies. The deployment specification element is expected to be extended in specific
component profiles. Non-normative examples of the standard stereotypes that a profile might add to deployment
specification are, for example, «concurrencyMode» with tagged values {thread, process, none}, or «transactionMode»
with tagged values {transaction, nestedTransaction, none}.

Notation

A DeploymentSpecification is graphically displayed as a classifier rectangle that is attached to a component artifact that
is deployed on a container using a regular dependency notation. If the deployment relationship is made explicit (as in
Figure 10.13), the Dependency may be attached to that relationship.

«deployment spec» «deployment spec»
Name Name
execution: execKind executiqn: thread
transaction : Boolean transaction : true

Figure 10.11 - DeploymentSpecification for an artifact (specification and instance levels)

UML Superstructure Specification, v2.0 199

A rverl

«artifact» D
ShoppingApp.ear

«artifact» D «artifact» D
ShoppinCart.jar — |[-------------=-=--mm-mo-oes > Order jar

«deployment spec» «deployment spec»

ShoppingAppdesc.xml Orderdesc.xml

Figure 10.12 - DeploymentSpecifications related to the artifacts that they parameterize

«artifact» 0
Order jar

«deployment spec»

|
deplo
caeployr L Orderdesc.xml

:AppServer

Figure 10.13 - A DeploymentSpecification for an artifact

Changes from previous UML

The following changes from UML 1.x have been made — DeploymentSpecification does not exist in UML 1.x.
10.3.6 DeploymentTarget (from Nodes)

A deployment target is the location for a deployed artifact.

Generalizations

« “NamedElement (from Kernel, Dependencies)” on page 93

200 UML Superstructure Specification, v2.0

Description

In the metamodel, DeploymentTarget is an abstract metaclass that is a specialization of NamedElement. A
DeploymentTarget owns a set of Deployments.

Attributes

No additional attributes
Associations

Nodes Package

e deployment : Deployment [*]
The set of Deployments for a DeploymentTarget. This association specializes the clientDependency association.

e [deployedElement : PackageableElement [*]
The set of elements that are manifested in an Artifact that is involved in Deployment to a DeploymentTarget. The
association is a derived association.

context DeploymentTarget::deployedElement derive:
((self.deployment->collect(deployedArtifact))->collect(manifestation))->collect(utilizedElement)

Constraints

No additional constraints

Semantics

Acrtifacts are deployed to a deployment target. The deployment target owns the set of deployments that target it.

Notation

No additional notation

Changes from previous UML

The following changes from UML 1.x have been made: The capability to deploy artifacts and artifact instances to nodes
has been made explicit based on UML 2.0 instance modeling.

10.3.7 Device (from Nodes)

A Device is a physical computational resource with processing capability upon which artifacts may be deployed for
execution. Devices may be complex (i.e., they may consist of other devices).

Generalizations

« “Node (from Nodes)” on page 205

Description

In the metamodel, a Device is a subclass of Node.

UML Superstructure Specification, v2.0 201

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

A device may be a nested element, where a physical machine is decomposed into its elements, either through namespace
ownership or through attributes that are typed by Devices.

Notation

A Device is notated by a Node annotated with the stereotype «device».

«device»
:AppServer
: : «device»
«executionEnvironment» :DBServer
:J2EEServer
e oot v OrderSchema.ddl|
Order.jar

ltemSchema.dd|
ShoppingCart.jar

Account.jar
Product.jar

BackOrder.jar

Service.jar

Figure 10.14 - Notation for a Device

Changes from previous UML

The following changes from UML 1.x have been made — Device is not defined in UML 1.x.
10.3.8 ExecutionEnvironment (from Nodes)

An ExecutionEnvironment is a node that offers an execution environment for specific types of components that are
deployed on it in the form of executable artifacts.

Generalizations

» “Node (from Nodes)” on page 205

202 UML Superstructure Specification, v2.0

Description

In the metamodel, an ExecutionEnvironment is a subclass of Node. It is usually part of a general Node, representing the
physical hardware environment on which the ExecutionEnvironment resides. In that environment, the
ExecutionEnvironment implements a standard set of services that Components require at execution time (at the modeling
level these services are usually implicit). For each component Deployment, aspects of these services may be determined
by properties in a DeploymentSpecification for a particular kind of ExecutionEnvironment.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

ExecutionEnvironment instances are assigned to node instances by using composite associations between nodes and
ExecutionEnvironments, where the ExecutionEnvironment plays the role of the part. ExecutionEnvironments can be
nested (e.g., a database ExecutionEnvironment may be nested in an operating system ExecutionEnvironment).
Components of the appropriate type are then deployed to specific ExecutionEnvironment nodes.

Typical examples of standard ExecutionEnvironments that specific profiles might define stereotypes for are «OS»,
«workflow engine», «database system», and «J2EE container».

An ExecutionEnvironment can optionally have an explicit interface of system level services that can be called by the
deployed elements, in those cases where the modeler wants to make the ExecutionEnvironment software execution
environment services explicit.

Notation

A ExecutionEnvironment is notated by a Node annotated with the stereotype «executionEnvironment».

«executionEnvironment»
:J2EEServer

Order.jar
ShoppingCart.jar
Account.jar
Product.jar
BackOrder.jar

Service.jar

Figure 10.15 - Notation for a ExecutionEnvironment (example of an instance of a J2EEServer ExecutionEnvironment)

UML Superstructure Specification, v2.0 203

Changes from previous UML

The following changes from UML 1.x have been made — ExecutionEnvironment is not defined in UML 1.x.
10.3.9 InstanceSpecification (from Nodes)

An instance specification is extended with the capability of being a deployment target in a deployment relationship, in the
case that it is an instance of a node. It is also extended with the capability of being a deployed artifact, if it is an instance
of an artifact.

Generalizations
« “DeployedArtifact (from Nodes)” on page 195
» “DeploymentTarget (from Nodes)” on page 200

» “InstanceSpecification (from Kernel)” on page 78 (merge increment)

Description

In the metamodel, InstanceSpecification is a specialization of DeploymentTarget and DeployedArtifact.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] An InstanceSpecification can be a DeploymentTarget if it is the instance specification of a Node and functions as a part in
the internal structure of an encompassing Node.

[2] An InstanceSpecification can be a DeployedArtifact if it is the instance specification of an Artifact.

Semantics

No additional semantics

Notation

An instance can be attached to a node using a deployment dependency, or it may be visually nested inside the node.

Changes from previous UML

The following changes from UML 1.x have been made — the capability to deploy artifact instances to node instances
existed in UML 1.x, and has been made explicit based on UML 2.0 instance modeling.

10.3.10 Manifestation (from Artifacts)

A manifestation is the concrete physical rendering of one or more model elements by an artifact.

204 UML Superstructure Specification, v2.0

Generalizations

« “Abstraction (from Dependencies)” on page 35

Description

In the metamodel, a Manifestation is a subtype of Abstraction. A Manifestation is owned by an Artifact.

Attributes

No additional attributes

Associations

Artifacts

e utilizedElement : PackageableElement [1] The model element that is utilized in the manifestation in an Artifact.
This association specializes the supplier association.

Constraints

No additional associations

Semantics

An artifact embodies or manifests a number of model elements. The artifact owns the manifestations, each representing
the utilization of a packageable element.

Specific profiles are expected to stereotype the manifestation relationship to indicate particular forms of manifestation.
For example, <<tool generated>> and <<custom code>> might be two manifestations for different classes embodied in an
artifact.

Notation

A manifestation is notated in the same way as an abstraction dependency, i.e., as a general dashed line with an open
arrow-head labeled with the keyword <<manifest>>.

Changes from previous UML

The following changes from UML 1.x have been made: Manifestation is defined as a meta association in UML 1.x,
prohibiting stereotyping of manifestations. In UML 1.x, the concept of Manifestation was referred to as ‘implementation’
and annotated in the notation as <<implement>>. Since this was one of the many uses of the word ‘implementation’ this
has been replaced by <<manifest>>.

10.3.11 Node (from Nodes)

A node is computational resource upon which artifacts may be deployed for execution.

Nodes can be interconnected through communication paths to define network structures.

Generalizations

» “Class (from StructuredClasses)” on page 162

UML Superstructure Specification, v2.0 205

« “DeploymentTarget (from Nodes)” on page 200

Description

In the metamodel, a Node is a subclass of Class. It is associated with a Deployment of an Artifact. It is also associated
with a set of Elements that are deployed on it. This is a derived association in that these PackageableElements are
involved in a Manifestation of an Artifact that is deployed on the Node. Nodes may have an internal structure defined in
terms of parts and connectors associated with them for advanced modeling applications.

Attributes

No additional attributes
Associations

Nodes Package

« nestedNode : Node [*] The Nodes that are defined (nested) within the Node. The association is a specialization of the
ownedMember association from Namespace to NamedElement.

Constraints
[1] The internal structure of a Node (if defined) consists solely of parts of type Node.
Semantics

Nodes can be connected to represent a network topology by using communication paths. Communication paths can be
defined between nodes such as “application server” and “client workstation” to define the possible communication paths
between nodes. Specific network topologies can then be defined through links between node instances.

Hierarchical nodes (i.e., nodes within nodes) can be modeled using composition associations, or by defining an internal
structure for advanced modeling applications.

Non-normative examples of nodes are «application server», «client workstation», «mobile device», «embedded device».

Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube.

:AppServer

Figure 10.16 - An instance of a Node

Dashed arrows with the keyword «deploy» show the capability of a node type to support a component type. Alternatively,
this may be shown by nesting component symbols inside the node symbol.

Nodes may be connected by associations to other nodes. A link between node instances indicates a communication path
between the nodes.

206 UML Superstructure Specification, v2.0

AppServer 1 DBServer

*
«dEpIOy»,,"/ \\‘ «deploy»
orderjar [J RequestHandler jar [

Figure 10.17 - Communication path between two Node types with deployed Artifacts

Acrtifacts may be contained within node instance symbols. This indicates that the items are deployed on the node
instances.

:AppServerl
«artifact» 0 «artifact» 0
ShoppinCartjar — f------------mmmmmmmmmmmomoos > rder.iar

Figure 10.18 - A set of deployed component artifacts on a Node

Changes from previous UML

The following changes from UML 1.x have been made: to be written.
10.3.12 Property (from Nodes)

A Property is extended with the capability of being a DeploymentTarget in a Deployment relationship. This enables
modeling the deployment to hierarchical Nodes that have Properties functioning as internal parts.

Generalizations

» “Property (from InternalStructures)” on page 179 (merge increment)

Description

In the metamodel, Property is a specialization of DeploymentTarget.

Attributes

No additional attributes

Associations

No additional associations

UML Superstructure Specification, v2.0 207

Constraints

[1] A Property can be a DeploymentTarget if it is a kind of Node and functions as a part in the internal structure of an
encompassing Node.

Semantics

No additional semantics

Notation

No additional notation

Changes from previous UML

The following changes from UML 1.x have been made — the capability to deploy to Nodes with an internal structure has
been added to UML 2.0.

10.4 Diagrams

Deployment diagram

Graphical nodes

The graphic nodes that can be included in deployment diagrams are shown in Table 10.1.

Table 10.1 - Graphic nodes included in deployment diagrams

Node Type Notation Reference

Artifact See “Artifact.”

«artifact» D
ArtifactName

Node See “Node.” Has keyword options «device» and
«execution environment».

NodeName

Artifact deployed on Node See “Deployment.”

«artifact» O
ArtifactName

Node with deployed Artifacts See “Deployment.”

Node

«artifact» [
ArtifactName

208 UML Superstructure Specification, v2.0

Table 10.1 - Graphic nodes included in deployment diagrams

Node Type Notation Reference
Node with deployed Artifacts See “Deployment” (alternative, textual notation).
«exeNcutlnnT\‘nvlﬁnmenl»
artifactl
artifact2
artifact3
Deployment specification See “Deployment Specification.”

«deployment spec»

Name
Deployment specification - with See “Deployment Specification.”
properties «deployment spec»
Name

execution: execKind
transaction : Boolean

Deployment specification - with See “Deployment Specification.”
property values

«deployment spec»
Name

execution: thread
transaction : true

Artifact with annotated See “Artifact.”
deployment properties <artifacs)

ArtifactName

{execution=thread,
transaction =true}

Graphical paths

The graphic paths that can be included in deployment diagrams are shown in Table 10.2 .

Table 10.2 - Graphic nodes included in deployment diagrams

Path Type Notation Reference

Association See “Association (from Kernel)” on page 36. Used to model communication
paths between DeploymentTargets.

UML Superstructure Specification, v2.0 209

Table 10.2 - Graphic nodes included in deployment diagrams

Path Type

Notation

Reference

Dependency

See “Dependency (from Dependencies)” on page 58. Used to model general
dependencies. In Deployment diagrams, this notation is used to depict the
following metamodel associations: (i) the relationship between an Artifact
and the model element(s) that it implements, and (ii) the deployment of an
Artifact (instance) on a Node (instance).

Generalization

See “Generalization (from Kernel, PowerTypes)” on page 67.

Deployment

«deploy»

The Deployment relationship

Manifestation

The Manifestation relationship

210

UML Superstructure Specification, v2.0

Part Il - Behavior

This part specifies the dynamic, behavioral constructs (e.g., activities, interactions, state machines) used in various
behavioral diagrams, such as activity diagrams, sequence diagrams, and state machine diagrams. The UML packages that
support behavioral modeling, along with the structure packages they depend upon (CompositeStructures and Classes) are

shown in the figure below.

]

Classes

N

|

CommonBehaviors

R N

/
— NN
Activiti \
ties Interactions StateMachines UseCases

N

- |

Actions

Part Il, Figure 1 - UML packages that support behavioral modeling

The function and contents of these packages are described in following chapters, which are organized by major subject
areas.

UML Superstructure Specification, v2.0 211

212 UML Superstructure Specification, v2.0

11 Actions

11.1 Overview

Basic Concepts

An action is the fundamental unit of behavior specification. An action takes a set of inputs and converts them into a set
of outputs, though either or both sets may be empty. The most basic action provides for implementation-dependent
semantics, while other packages provide more specific actions. Some of the actions modify the state of the system in
which the action executes. The values that are the inputs to an action may be described by value specifications, obtained
from the output of actions that have one output (in StructuredActions), or in ways specific to the behaviors that use them.
For example, the activity flow model supports providing inputs to actions from the outputs of other actions.

Actions are contained in behaviors, which provide their context. Behaviors provide constraints among actions to
determine when they execute and what inputs they have. The Actions chapter is concerned with the semantics of
individual, primitive actions.

Basic actions include those that perform operation calls, signal sends, and direct behavior invocation. Operation calls are
specified in the model and can be dynamically selected only through polymorphism. Signals are specified by a signal
object, whose type represents the kind of message transmitted between objects, and can be dynamically created. Note that
operations may be bound to activities, state machine transitions, or other behaviors. The receipt of signals may be bound
to activities, state machine transitions, or other behaviors.

Intermediate Concepts

The intermediate level describes the various action primitive actions. These primitive actions are defined in such a way as
to enable the maximum range of mappings. Specifically, primitive actions are defined so that they either carry out a
computation or access object memory, but never both. This approach enables clean mappings to a physical model, even
those with data organizations different from that suggested by the specification. In addition, any re-organization of the
data structure will leave the specification of the computation unaffected.

A surface action language would encompass both primitive actions and the control mechanisms provided by behaviors. In
addition, a surface language may map higher-level constructs to the actions. For example, creating an object may involve
initializing attribute values or creating objects for mandatory associations. The specification defines the create action to
only create the object, and requires further actions to initialize attribute values and create objects for mandatory
associations. A surface language could choose to define a creation operation with initialization as a single unit as a
shorthand for several actions.

A particular surface language could implement each semantic construct one-to-one, or it could define higher-level,
composite constructs to offer the modeler both power and convenience. This specification, then, expresses the
fundamental semantics in terms of primitive behavioral concepts that are conceptually simple to implement. Modelers can
work in terms of higher-level constructs as provided by their chosen surface language or notation.

The semantic primitives are defined to enable the construction of different execution engines, each of which may have
different performance characteristics. A model compiler builder can optimize the structure of the software to meet
specific performance requirements, so long as the semantic behavior of the specification and the implementation remain
the same. For example, one engine might be fully sequential within a single task, while another may separate the classes
into different processors based on potential overlapping of processing, and yet others may separate the classes in a client-
server, or even a three-tier model.

UML Superstructure Specification, v2.0 213

The modeler can provide “hints” to the execution engine when the modeler has special knowledge of the domain solution
that could be of value in optimizing the execution engine. For example, instances could—by design—be partitioned to
match the distribution selected, so tests based on this partitioning can be optimized on each processor. The execution
engines are not required to check or enforce such hints. An execution engine can either assume that the modeler is correct,
or just ignore it. An execution engine is not required to verify that the modeler’s assertion is true.

When an action violates aspects of static UML modeling that constrain runtime behavior, the semantics is left undefined.
For example, attempting to create an instance of an abstract class is undefined - some languages may make this action
illegal, others may create a partial instance for testing purposes. The semantics are also left undefined in situations that
require classes as values at runtime. However, in the execution of actions the lower multiplicity bound is ignored and no
error or undefined semantics is implied. (Otherwise it is impossible to use actions to pass through the intermediate
configurations necessary to construct object configurations that satisfy multiplicity constraints.) The modeler must
determine when minimum multiplicity should be enforced, and these points cannot be everywhere or the configuration
cannot change.

Invocation Actions

More invocation actions are defined for broadcasting signals to the available “universe” and transmitting objects that are
not signals.

Read Write Actions

Objects, structural features, links, and variables have values that are available to actions. Objects can be created and
destroyed; structural features and variables have values; links can be created and destroyed, and can reference values
through their ends; all of which are available to actions. Read actions get values, while write actions modify values and
create and destroy objects and links. Read and write actions share the structures for identifying the structural features,
links, and variables they access.

Obiject actions create and destroy objects. Structural feature actions support the reading and writing of structural features.
The abstract metaclass StructuralFeatureAction statically specifies the structural feature being accessed. The object to
access is specified dynamically, by referring to an input pin on which the object will be placed at runtime. The semantics
for static features is undefined. Association actions operate on associations and links. In the description of these actions,
the term “associations” does not include those modeled with association classes, unless specifically indicated. Similarly, a
“link” is not a link object unless specifically indicated. The semantics of actions that read and write associations that have
a static end is undefined.

Value specifications cover various expressions ranging from implementation-dependent constants and complex
expressions, even with side-effects. An action is defined for evaluating these. Also see “ValuePin (from BasicActions)”
on page 279.

Complete Concepts

The major constructs associated with complete actions are outlined below.

Read Write Actions

Additional actions deal with the relation between object and class and link objects. These read the instances of a given
classifier, check which classifier an instance is classified by, and change the classifier of an instance. Link object actions
operate on instances of association classes. Also the reading and writing actions of associations are extended to support
qualifiers.

214 UML Superstructure Specification, v2.0

Other Actions

Actions are defined for accepting events, including operation calls, and retrieving the property values of an object all at
once. The StartClassifierBehaviorAction provides a way to indicate when the classifier behavior of a newly created object

should begin to execute.

Structured Concepts

These actions operate in the context of activities and structured nodes. Variable actions support the reading and writing of
variables. The abstract metaclass VariableAction statically specifies the variable being accessed. Variable actions can only
access variables within the activity of which the action is a part. An action is defined for raising exceptions and a kind of
input pin is defined for accepting the output of an action without using flows.

11.2 Abstract Syntax

The package dependencies of the Actions chapter are shown in Figure 11.1.

]

StructuredActivities

]

Kernel

A

<<import>>

[

BasicActions

<<import>> <<imp0n>>/ /l\

StructuredActions

/

/

IntermediateActions

Communications

I

e

<<import>> / <<import>>

BehaviorStateM achines

<<impon>>
| / e
<<merge>> ‘ / " <<import>>
e
_—
1 g

CompleteActions

Figure 11.1 - Dependencies of the Action packages

UML Superstructure Specification, v2.0

/

Asso ciation Classes

215

Package BasicActions

NamedElement
(from Kemd)
Action +/context Classifier
(from Kernel)
0.1
OpaqueAction
body : String[1..*] {ordered}
language : String[*] {ordered}
Figure 11.2 - Basic actions
TypedElement MultiplicityElement
(fromKe mel)
Pin
OutputPin InputPin
* +/output * +/input

¢

{ordered, union,

subsets ownedElement}

{ordered, union,
subsets ownedElement}

ValuePin

1 +value

(!

Action

Figure 11.3 - Basic pins

216

ValueSpecification
(fromKernel)

UML Superstructure Specification, v2.0

Action

—_— % InvocationAction
InputPin
&
+argum ent
{ordered,
- subsetsinput}
OutputPin
*
+result
{ordered, CallAction P——
subsets output} @ 55ynchronous:: Boolean = tue EACSI0na g tOn

0.1 *
+target
{subsets input} 1 +signal
T _ L
CallBehaviorAction al pferalon InputPin Signal
Action > = (from Communications)
+target
. {subsets input}

+behavior, |, 1 +operation
1
Behavior Openation
(from BasicBehaviors) (fromKernd)

Figure 11.4 - Basic invocation actions

UML Superstructure Specification, v2.0 217

Package IntermediateActions

InvocationAction
(fromBasicActions)

BroadcastSignalAction SendObjectAction
*
1
+signal
1 - 1
Si | InputPin
Igna (from BasicActions)
(from Communic ations) +target +request
{subsetsinput} {redefines argument}
Figure 11.5 - Intermediate invocation actions
Action InputPin
(fromBasicActions) (from BasicActions)
+firg 1 1 +second
{subsets input} {subsets input}
0.1
- : DesroyObjectAction ‘ ‘ 0.1 -
CreateObjectAction - - TestldentityAction ReadSelfAction
isDestroyLinks : Boolean = false
isDestroyOwnedObjects: Boolean = false
*
0.1 0.1
0.1 0..1
+result +result
) +result {subsets input} 1 {subse ts output} {subsets output}
1 | +classifier 1 {subsets output} 1 P P 1
+target
Classifier OutputPin InputPin OutputPin

OutputPin
(fromKe mel) (from BasicActions) (from BasicActions) (from BasicActions) (from Basic Actions)

Figure 11.6 - Object actions

218 UML Superstructure Specification, v2.0

Action

(fromBasicActions)

1 *
Structural Feature StructuralFeatureAction 0..1 1 Inp utPin
(fromKemel) +structuralFeature et +object (from BasicActi ans)
{subsetsinput}
Re ad Stru ctural FeatureActi on HO]- WriteStructural FeatureAction
0.1
+realt
1 {subsets output}
OutputPin AddStructuralFe atureValueAction

(from BasicAdions)

+value

ClearStructural FeatureAction

isReplaceAll : Boolean =fals

{subsetsinput}

0.1

0.1

RemoveStructuralFeatureValueAction

isRemoveDuplicates: Boolean = false

InputPin
(from Basic Act ons)

+inertAt {subsetsinput}

0.1

0.1

Figure 11.7 - Structural Feature Actions

UML Superstructure Specification, v2.0

+removeAt {subsetsinput}

219

Action Element

(from Basi cActions) (fromKernel)
LinkAction 2.x LinkEndData
®
1 +endData
* 0.1
/
_— +value
{Property must be [\~ 1 | +end 0.1
an association -
end.} Property InputPin
(from Kernel) (from BasicActions)
Figure 11.8 - Link identification
LinkAction
0..1 1
ReadLinkAction @ OutputPin
+realt (from BasicActions)
{subsets output}

Figure 11.9 - Read link actions

220 UML Superstructure Specification, v2.0

Action
(fromBasicActions)

7

LinkAction

ClearAss ciationAction

WriteLinkAction

0..1 0.1
+object
{subsetsinput} 1
InputPin
(fromBasi cActions)
+association 1
Association

CreateLinkAction

+endData
2 {redefines endData}

LinkEndCre ation Data

isReplaceAll : Boolean = false

(from Kernel)

DedroyLinkAction

InputPin

+inertAt

(from BasicActions)

2.*

+endData
{subsets endData}

LinkEn dDestructionData

isRemoveDuplicates: Boolean = false

+destroy At

LinkEndData

Element
(fromKernel)

Figure 11.10 - Write link actions

UML Superstructure Specification, v2.0

.1

0.1

221

Figure 11.11 - Miscellaneous actions

222

Action

(fomBasicActions)

A

ValueSpecificationAction

+value

1

0.1

ValueSpecification
(fromKernel)

1

0.1

+result
{subsets output}

OutputPin
(from BasicActions)

UML Superstructure Specification, v2.0

Package CompleteActions

(fromBasicActions)

Action

AcceptEventAction

isUnmarshall : Boolean = false 0.1

®*

+trigger

1..*

Trigger

(from Communications)

0..*

+result

AcceptCallAction

+returninformation
{subsets output}
1..*

QutputPin
(from BasicActions)

OutputPin
(from BasicActions)

{subsets output}

+replyToCall 1

ReplyAction UnmarshallAction
H
0.1 0.1 0..1 0.*| 0.*
1 +retum Information
0..% {subsetsinput}

—

InputPin

+replyValue

{subsetsinput}

CallEvent
(from Communications)

(from Basic Actions)

+object
{subsetsinput}

Classifier
(fromKernel)

1

+unmarshallType

+result

Figure 11.12 - Accept event actions

UML Superstructure Specification, v2.0

{subsets output}

223

Action
(fromBasicActions)

ReadExtentAction Re dassifyObjectAction ReadlsClassifiedObjectAction StartClassifierBehaviorAction
isReplaceAll : Boolean = false isDirect : Boolean = false
’ 0.1 5 % 0.1 ’ 0.1 ’ 0.1
0.1
+object .
{subsets input} +object
1 1 {subsets input}
InputPin
(from BasicAct... InputPin
(from BasicActi...
+result +oldClassifier | « * | +newClassifier +realt +object
1 subsets output .
fsubsets output} N 1| ¢ put} {subsets input} 1
OutputPin 1 Classifier OutputPin InputPin
(from BasicActi... +dassfer (fromKerrel) +classifier (from BasicAci ... (from BasicActi...
Figure 11.13 - Object actions (CompleteActions)
LinkEndData Element
(fromKernel)
1
* +qualifier
Qualifienvalue | * 1
I Property
+qua|ifier (from AssociationClasses)
0.1
+value
1 { {Property mug
InputPin —— ——|beaqualifier
(from BasicActions) attribute }

Figure 11.14 - Link identification (CompleteActions)

224 UML Superstructure Specification, v2.0

Action

(fromBasicActions)

T

ReadLinkObje c¢cEndAction

0.1 ’
]

+end 1

Property
(from Kernel) ‘

{ Property must
be an
association end

0..

1

{subsets output}

OutputPin

+result | (fromBasicAdins)

1 InputPin

}

Figure 11.15 - Read link actions (CompleteActions)

+object

(from BasicAdi ns)

{subsets inp ut}

CreateLinkAction
(from IntermediateActions)

Create LinkObjectAction

+endData

ReadLinkObjectEndQualifierAction

0.1 ’ 0.1 0.1

1

+result
{subsets output}

+object

{subsets input}

+qualifier 1

‘ Property
(from AssociationClasses)

{Property must
be an qualifier
attribute.}

0.1

+result 1 {subsets output}

OutputPin
(from Basic Actions)

Figure 11.16 - Write link actions (CompleteActions)

LinkEn dCreationData

2.*

{redefines endData}

UML Superstructure Specification, v2.0

{ordered}

1.x +qualifier

Qualifiervalue

225

Package StructuredActions

Action

(fromBasicActions)

VariableAction 1 Variable
+variable (from StructuredActivities)
0.1
ReadVariableAction — @ WiteVariableAction
0..1
1 +result
{subsets output} AddVariableValueAction
OutputPin

(from Basic Adi ns)

+value
{subsets input}

ClearVariableAction

isReplaceAll : Boolean = fal se

0..1

0.1

InputPin
(from Basic Actions)

+insertAt {subsetsinput}
0.

1

RemoveVariableValueAction
isRemoveDuplicates: Boolean = false

0.1

Figure 11.17 - Variable actions

226

+removeAt {subsetsinput}

UML Superstructure Specification, v2.0

Action

(fromBasicActions)

RaiseExceptionAction
P <>

InputPin
(from BasicActions)

+exception
{subsetsinput}

Figure 11.18 - Raise exception action

InputPin

(from BasicActions)

ActionlnputPin

0.1 1
®

+fromActio/n

Action
(from BasicActions)

{subsets ownedElement}

Figure 11.19 - Action input pin

11.3 Class Descriptions

11.3.1 AcceptCallAction (from CompleteActions)

Generalizations

« “AcceptEventAction (from CompleteActions)” on page 228

Description

AcceptCallAction is an accept event action representing the receipt of a synchronous call request. In addition to the
normal operation parameters, the action produces an output that is needed later to supply the information to the

ReplyAction necessary to return control to the caller.

This action is for synchronous calls. If it is used to handle an asynchronous call, execution of the subsequent reply action
will complete immediately with no effects.

Attributes

No additional attributes

UML Superstructure Specification, v2.0

227

Associations

e returninformation: OutputPin [1..1] — Pin where a value is placed containing sufficient information to perform a
subsequent reply and return control to the caller. The contents of this value are opaque. It can be passed and copied but it
cannot be manipulated by the model.

Constraints

[1] The result pins must match the in and inout parameters of the operation specified by the trigger event in number, type, and
order.

[2] The trigger event must be a CallEvent.
trigger.event.ocllsKindOf(CallEvent)

[3] isUnmarshall must be true for an AcceptCallAction.
isUnmarshall = true

Semantics

This action accepts (event) occurrences representing the receipt of calls on the operation specified by the trigger call
event. If an ongoing activity behavior has executed an accept call action that has not completed and the owning object has
an event occurrence representing a call of the specified operation, the accept call action claims the event occurrence and
removes it from the owning object. If several accept call actions concurrently request a call on the same operation, it is
unspecified which one claims the event occurrence, but one and only one action will claim the event. The argument
values of the call are placed on the result output pins of the action. Information sufficient to perform a subsequent reply
action is placed in the returninformation output pin. The execution of the accept call action is then complete. This return
information value is opaque and may only be used by ReplyAction.

Note that the target class must not define a method for the operation being received. Otherwise, the operation call will be
dispatched to that method instead of being put in the event buffer to be handled by AcceptCallAction. In general, classes
determine how operation calls are handled, namely by a method, by a behavior owned directly by the class, by a state
machine transition, and so on. The class must ensure that the operation call is handled in a way that AcceptCallAction has
access to the call event.

11.3.2 AcceptEventAction (from CompleteActions)

Generalizations

« “Action (from BasicActions)” on page 230

Description

AcceptEventAction is an action that waits for the occurrence of an event meeting specified condition.

Attributes

e isUnmarshall : Boolean = false Indicates whether there is a single output pin for the event, or multiple output pins for
attributes of the event.

Associations

e trigger : Trigger [1..*] The type of events accepted by the action, as specified by triggers. For triggers with signal
events, a signal of the specified type or any subtype of the specified signal type is
accepted.

228 UML Superstructure Specification, v2.0

e result: OutputPin [0..*] Pins holding the received event objects or their attributes. Event objects may be copied in
transmission, so identity might not be preserved.

Constraints
[1] AcceptEventActions may have no input pins.

[2] There are no output pins if the trigger events are only ChangeEvents, or if they are only CallEvents when this class is
AcceptEventAction and not one of its children.

[3] If the trigger events are all TimeEvents, there is exactly one output pin.

[4] If isUnmarshalled is true, there must be exactly one trigger for events of type SignalEvent. The number of result output
pins must be the same as the number of attributes of the signal. The type and ordering of each result output pin must be the
same as the corresponding attribute of the signal. The multiplicity of each result output pin must be compatible with the
multiplicity of the corresponding attribute.

Semantics

Accept event actions handle event occurrences detected by the object owning the behavior (also see
“InterruptibleActivityRegion (from CompleteActivities)” on page 366). Event occurrences are detected by objects
independently of actions and the occurrences are stored by the object. The arrangement of detected event occurrences is
not defined, but it is expected that extensions or profiles will specify such arrangements. If the accept event action is
executed and the object detected an event occurrence matching one of the triggers on the action and the occurrence has
not been accepted by another action or otherwise consumed by another behavior, then the accept event action completes
and outputs a value describing the occurrence. If such a matching occurrence is not available, the action waits until such
an occurrence becomes available, at which point the action may accept it. In a system with concurrency, several actions
or other behaviors might contend for an available event occurrence. Unless otherwise specified by an extension or profile,
only one action accepts a given occurrence, even if the occurrence would satisfy multiple concurrently executing actions.

If the occurrence is a signal event occurrence and unmarshall is false, the result value contains a signal object whose
reception by the owning object caused the occurrence. If the occurrence is a signal event occurrence and isUnmarshall is
true, the attribute values of the signal are placed on the result output pins of the action. Signal objects may be copied in
transmission and storage by the owning object, so identity might not be preserved. An action whose trigger is a
SignalTrigger is informally called an accept signal action. If the occurrence is a time event occurrence, the result value
contains the time at which the occurrence transpired. Such an action is informally called a wait time action. If the
occurrences are all occurrences of ChangeEvent, or all CallEvent, or a combination of these, there are no output pins
(however, see “AcceptCallAction (from CompleteActions)” on page 227). See CommonBehavior for a description of
Event specifications. If the triggers are a combination of SignalEvents and ChangeEvents, the result is a null value if a
change event occurrence or a call event occurrence is accepted.

This action handles asynchronous messages, including asynchronous calls. It cannot be used with synchronous calls
(except see “AcceptCallAction (from CompleteActions)” on page 227).

UML Superstructure Specification, v2.0 229

Notation

An accept event action is notated with a concave pentagon. A wait time action is notated with an hour glass.

X

Accept event action Accept time event action

Figure 11.20 - Accept event notations.

Examples

“AcceptEventAction (as specialized)” on page 299

Rationale

Accept event actions are introduced to handle processing of events during the execution of a behavior.

Changes from previous UML

AcceptEventAction is new in UML 2.0.
11.3.3 Action (from BasicActions)

Generalizations

« “NamedElement (from Kernel, Dependencies)” on page 93

Description

An action is a named element that is the fundamental unit of executable functionality. The execution of an action
represents some transformation or processing in the modeled system, be it a computer system or otherwise.

Attributes

No additional attributes

Associations
e input: InputPin [*] The ordered set of input pins connected to the Action. These are among the total set of inputs.

e Joutput: OutputPin [*] The ordered set of output pins connected to the Action. The action places its results onto pins
in this set.

e Jcontext: Classifier [1] The classifier that owns the behavior of which this action is a part.

Constraints

No additional constraints

230 UML Superstructure Specification, v2.0

Semantics

An action execution represents the run-time behavior of executing an action within a specific behavior execution. As
Action is an abstract class, all action executions will be executions of specific kinds of actions. When the action executes,
and what its actual inputs are, is determined by the concrete action and the behaviors in which it is used.

Notation

No specific notation. See extensions in Activities chapter.

Changes from previous UML

Action is the same concept as in UML 1.5, but modeled independently of the behaviors that use it.
11.3.4 ActioninputPin (from StructuredActions)

Generalizations

« “InputPin (from BasicActions)” on page 249

Description

An action input pin is a kind of pin that executes an action to determine the values to input to another.

Attributes

No additional attributes

Associations

e fromAction : Action [1] The action used to provide values.

Constraints

[1] The fromAction of an action input pin must have exactly one output pin.

[2] The fromAction of an action input pin must only have action input pins as input pins.

[3] The fromAction of an action input pin cannot have control or data flows coming into or out of it or its pins.

Semantics

If an action is otherwise enabled, the fromActions on action input pins are enabled. The outputs of these are used as the
values of the corresponding input pins. The process recurs on the input pins of the fromActions, if they also have action
input pins. The recursion bottoms out at actions that have no inputs, such as for read variables or the self object. This
forms a tree that is an action model for nested expressions.

Notation

No specific notation

Example
Example (in action language provided just for example, not normative):

self.foo->bar(self.baz);

UML Superstructure Specification, v2.0 231

meaning get the foo attribute of self, then send a bar signal to it with argument from the baz attribute of self. The
repository model is shown below.

: SendSignal Action bar : Signal
+arget i1: ActianlnputAin
+fromAction
+structuralFeature
g1 : ReadStructuralFeatureAction fo : Propert
+result
ol : OutputPin
+object
i2 : ActioninputPin
+action
+result . !
s1: ReadSelfAction 02 : OutputPin
+a gument
9 i3 : ActioninputFin
+fromAction
+structural Feature baz : Proper

g2 : ReadStructual FeatureAction

+result
03 : OutputPin
+object 14 : ActioninputPin
+action
s2 : ReadSelfAction *resut 04: Qutputhin

Figure 11.21 - Example repository model

Rationale

ActionlnputPin is introduced to pass values between actions in expressions without using flows.

232 UML Superstructure Specification, v2.0

11.3.5 AddStructuralFeatureValueAction (from IntermediateActions)
AddStructuralFeatureValueAction is a write structural feature action for adding values to a structural feature.

Generalizations

« “WriteStructuralFeatureAction (from IntermediateActions)” on page 282.

Description

Structural Features are potentially multi-valued and ordered, so the action supports specification of insertion points for
new values. It also supports the removal of existing values of the structural feature before the new value is added.

The object to access is specified dynamically, by referring to an input pin on which the object will be placed at runtime.
The type of the value of this pin is the classifier that owns the specified structural feature, and the value’s multiplicity is
1.1.

Attributes

« isReplaceAll : Boolean [1..1] =false Specifies whether existing values of the structural feature of the object should be
removed before adding the new value.

Associations

e insertAt : InputPin [0..1] (Specialized from Action:input)
Gives the position at which to insert a new value or move an existing value in ordered structural features. The type of the
pin is UnlimitedNatural, but the value cannot be zero. This pin is omitted for unordered structural features.

Constraints
[1] Actions adding a value to ordered structural features must have a single input pin for the insertion point with type
UnlimitedNatural and multiplicity of 1..1, otherwise the action has no input pin for the insertion point.
let insertAtPins : Collection = self.insertAt in
if self.structuralFeature.isOrdered = #false
then insertAtPins->size() = 0
else let insertAtPin : InputPin= insertAt->asSequence()->first() in
insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))
endif

Semantics

If isReplaceAll is true, then the existing values of the structural feature are removed before the new one added, except if
the new value already exists, then it is not removed under this option. If isReplaceAll is false and the structural feature is
unordered and non-unique, then adding an existing value has no effect. If the feature is an association end, the semantics
are the same as creating a link, the participants of which are the object owning the structural feature and the new value.

Values of a structural feature may be ordered or unordered, even if the multiplicity maximum is 1. Adding values to
ordered structural features requires an insertion point for a new value using the insertAt input pin. The insertion point is
a positive integer giving the position to insert the value, or unlimited, to insert at the end. A positive integer less than or
equal to the current number of values means to insert the new value at that position in the sequence of existing values,

UML Superstructure Specification, v2.0 233

with the integer one meaning the new value will be first in the sequence. A value of unlimited for insertAt means to insert
the new value at the end of the sequence. The semantics is undefined for a value of zero or an integer greater than the
number of existing values. The insertion point is required for ordered structural features and omitted for unordered
structural features. Reinserting an existing value at a new position in an ordered unique structural feature moves the value
to that position (this works because structural feature values are sets). The insertion point is ignored when replacing all
values.

The semantics is undefined for adding a value that violates the upper multiplicity of the structural feature. Removing a
value succeeds even when that violates the minimum multiplicity—the same as if the minimum were zero. The modeler
must determine when minimum multiplicity of structural features should be enforced.

The semantics is undefined for adding a new value for a structural feature with isReadonly=true after initialization of the
owning object.

Notation

No specific notation

Rationale

AddStructuralFeatureValueAction is introduced to add structural feature values. isReplaceAll is introduced to replace and
add in a single action, with no intermediate states of the object where only some of the existing values are present.

Changes from previous UML

AddStructuralFeatureValueAction is new in UML 2.0. It generalizes AddAttributeAction in UML 1.5.
11.3.6 AddVariableValueAction (from StructuredActions)

AddVariableValueAction is a write variable action for adding values to a variable.

Generalizations

« “WriteVariableAction (from StructuredActions)” on page 283

Description

Variables are potentially multi-valued and ordered, so the action supports specification of insertion points for new values.

It also supports the removal of existing values of the variable before the new value is added.

Attributes

* isReplaceAll : Boolean [1..1] = false Specifies whether existing values of the variable should be removed before
adding the new value.

Associations

e insertAt : InputPin [0..1] (Specialized from Action:input)
Gives the position at which to insert a new value or move an existing value in ordered variables. The type is
UnlimitedINatural, but the value cannot be zero. This pin is omitted for unordered variables.

234 UML Superstructure Specification, v2.0

Constraints

[1] Actions adding values to ordered variables must have a single input pin for the insertion point with type UnlimitedNatural
and multiplicity of 1..1, otherwise the action has no input pin for the insertion point.

let insertAtPins : Collection = self.insertAt in

if self.variable.ordering = #unordered

then insertAtPins->size() = 0

else let insertAtPin : InputPin = insertAt->asSequence()->first() in
insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))

endif

Semantics

If isReplaceAll is true, then the existing values of the variable are removed before the new one added, except if the new
value already exists, then it is not removed under this option. If isReplaceAll is false and the variable is unordered and
non-unique, then adding an existing value has no effect.

Values of a variable may be ordered or unordered, even if the multiplicity maximum is 1. Adding values to ordered
variables requires an insertion point for a new value using the insertAt input pin. The insertion point is a positive integer
giving the position to insert the value, or unlimited, to insert at the end. A positive integer less than or equal to the current
number of values means to insert the new value at that position in the sequence of existing values, with the integer one
meaning the new value will be first in the sequence. A value of unlimited for insertAt means to insert the new value at the
end of the sequence. The semantics is undefined for a value of zero or an integer greater than the number of existing
values. The insertion point is required for ordered variables and omitted for unordered variables. Reinserting an existing
value at a new position in an ordered unique variable moves the value to that position (this works because variable values
are sets).

The semantics is undefined for adding a value that violates the upper multiplicity of the variable. Removing a value
succeeds even when that violates the minimum multiplicity—the same as if the minimum were zero. The modeler must
determine when minimum multiplicity of variables should be enforced.

Notation

No specific notation

Rationale

AddVariableValueAction is introduced to add variable values. isReplaceAll is introduced to replace and add in a single
action, with no intermediate states of the variable where only some of the existing values are present.

Changes from previous UML

AddVariableValueAction is unchanged from UML 1.5.
11.3.7 BroadcastSignalAction (from IntermediateActions)

Generalizations

« “InvocationAction (from BasicActions)” on page 249

UML Superstructure Specification, v2.0 235

Description

BroadcastSignalAction is an action that transmits a signal instance to all the potential target objects in the system, which
may cause the firing of a state machine transitions or the execution of associated activities of a target object. The
argument values are available to the execution of associated behaviors. The requestor continues execution immediately
after the signals are sent out. It does not wait for receipt. Any reply messages are ignored and are not transmitted to the
requestor.

Attributes

No additional attributes

Associations

e signal: Signal [1] The specification of signal object transmitted to the target objects.

Constraints
[1] The number and order of argument pins must be the same as the number and order of attributes in the signal.
[2] The type, ordering, and multiplicity of an argument pin must be the same as the corresponding attribute of the signal.

Semantics

When all the prerequisites of the action execution are satisfied, a signal object is generated from the argument values
according to signal and this signal object is transmitted concurrently to each of the implicit broadcast target objects in the
system. The manner of identifying the set of objects that are broadcast targets is a semantic variation point and may be
limited to some subset of all the objects that exist. There is no restriction on the location of target objects. The manner of
transmitting the signal object, the amount of time required to transmit it, the order in which the transmissions reach the
various target objects, and the path for reaching the target objects are undefined.

[1] When a transmission arrives at a target object, it may invoke a behavior in the target object. The effect of receiving such
transmission is specified in Chapter 13, “Common Behaviors.” Such effects include executing activities and firing state
machine transitions.

[2] A broadcast signal action receives no reply from the invoked behavior; any attempted reply is simply ignored, and no
transmission is performed to the requestor.

Semantic Variation Points

The determination of the set of broadcast target objects is a semantic variation point.

Notation

No specific notation

Rationale

Sends a signal to a set of system defined target objects.

Changes from previous UML

Same as UML 1.5.

236 UML Superstructure Specification, v2.0

11.3.8 CallAction (from BasicActions)

Generalizations

» “InvocationAction (from BasicActions)” on page 249.

Description

CallAction is an abstract class for actions that invoke behavior and receive return values.

Attributes

e isSynchronous: Boolean If true, the call is synchronous and the caller waits for completion of the invoked behavior.
If false, the call is asynchronous and the caller proceeds immediately and does not expect
a return value.

Associations

e result: OutputPin [0..*] A list of output pins where the results of performing the invocation are placed.

Constraints

[1] Only synchronous call actions can have result pins.

[2] The number and order of argument pins must be the same as the number and order of parameters of the invoked behavior
or behavioral feature. Pins are matched to parameters by order.

[3] The type, ordering, and multiplicity of an argument pin must be the same as the corresponding parameter of the behavior
or behavioral feature.

Semantics

Parameters on behaviors and operations are totally ordered lists. To match parameters to pins on call actions, select the
sublist of that list that corresponds to in and inout owned parameters (i.e., Behavior.ownedParameter). The input pins on
Action::input are matched in order against these parameters in the sublist order. Then take the sublist of the parameter list
that corresponds to out, inout, and return parameters. The output pins on Action::output are matched in order against these
parameters in sublist order.

See children of CallAction.
11.3.9 CallBehaviorAction (from BasicActions)

Generalizations

« “CallAction (from BasicActions)” on page 237

Description

CallBehaviorAction is a call action that invokes a behavior directly rather than invoking a behavioral feature that, in turn,
results in the invocation of that behavior. The argument values of the action are available to the execution of the invoked
behavior. The execution of the call behavior action waits until the execution of the invoked behavior completes and a
result is returned on its output pin. In particular, the invoked behavior may be an activity.

UML Superstructure Specification, v2.0 237

Attributes

No additional attributes

Associations

behavior : Behavior [1..1] The invoked behavior. It must be capable of accepting and returning control.

Constraints

[1]
(2]
(3]

The number of argument pins and the number of parameters of the behavior of type in and in-out must be equal.
The number of result pins and the number of parameters of the behavior of type return, out, and in-out must be equal.

The type, ordering, and multiplicity of an argument or result pin is derived from the corresponding parameter of the
behavior.

Semantics

(1]

(2]

(3]

[4]

[5]

When all the prerequisites of the action execution are satisfied, CallBehaviorAction invokes its specified behavior with
the values on the input pins as arguments. When the behavior is finished, the output values are put on the output pins.
Each parameter of the behavior of the action provides output to a pin or takes input from one. No other implementation
specifics are implied, such as call stacks, and so on. See “Pin (from BasicActions)” on page 256.

If the call is asynchronous, the action completes immediately. Execution of the invoked behavior proceeds without any
further dependency on the execution of the behavior containing the invoking action. Once the invocation of the behavior
has been initiated, execution of the asynchronous action is complete.

An asynchronous invocation completes when its behavior is started, or is at least ensured to be started at some point. Any
return or out values from the invoked behavior are not passed back to the containing behavior. When an asynchronous
invocation is done, the containing behavior continues regardless of the status of the invoked behavior. For example, the
containing behavior may complete even though the invoked behavior is not finished.

If the call is synchronous, execution of the calling action is blocked until it receives a reply from the invoked behavior.
The reply includes values for any return, out, or inout parameters.

If the call is synchronous, when the execution of the invoked behavior completes, the result values are placed on the result
pins of the call behavior action, and the execution of the action is complete (StructuredActions,
ExtraStructuredActivities). If the execution of the invoked behavior yields an exception, the exception is transmitted to
the call behavior action to begin search for a handler. See RaiseExceptionAction.

Notation

See

specialization of “CallBehaviorAction (as specialized)” on page 337.

Presentation Options

See

specialization of “CallBehaviorAction (as specialized)” on page 337.

Rationale

Invokes a behavior directly without the need for a behavioral feature.

Changes from previous UML

Same as UML 1.5

238

UML Superstructure Specification, v2.0

11.3.10 CallOperationAction (from BasicActions)

Generalizations

» “CallAction (from BasicActions)” on page 237

Description

CallOperationAction is an action that transmits an operation call request to the target object, where it may cause the
invocation of associated behavior. The argument values of the action are available to the execution of the invoked
behavior. If the action is marked synchronous, the execution of the call operation action waits until the execution of the
invoked behavior completes and a reply transmission is returned to the caller; otherwise execution of the action is
complete when the invocation of the operation is established and the execution of the invoked operation proceeds
concurrently with the execution of the calling behavior. Any values returned as part of the reply transmission are put on
the result output pins of the call operation action. Upon receipt of the reply transmission, execution of the call operation
action is complete.

Attributes

No additional attributes

Associations
e operation: Operation [1] The operation to be invoked by the action execution.

e target: InputPin [1] The target object to which the request is sent. The classifier of the target object is used to
dynamically determine a behavior to invoke. This object constitutes the context of the
execution of the operation.

Constraints
[1] The number of argument pins and the number of owned parameters of the operation of type in and in-out must be equal.

[2] The number of result pins and the number of owned parameters of the operation of type return, out, and in-out must be
equal.

[3] The type, ordering, and multiplicity of an argument or result pin is derived from the corresponding owned parameter of
the operation.

[4] The type of the target pin must be the same as the type that owns the operation.

Semantics

The inputs to the action determine the target object and additional actual arguments of the call.

[1] When all the prerequisites of the action execution are satisfied, information comprising the operation and the argument
pin values of the action execution is created and transmitted to the target object. The target objects may be local or remote.
The manner of transmitting the call, the amount of time required to transmit it, the order in which the transmissions reach
the various target objects, and the path for reaching the target objects are undefined.

[2] When a call arrives at a target object, it may invoke a behavior in the target object. The effect of receiving such call is
specified in Chapter 13, “Common Behaviors.” Such effects include executing activities and firing state machine
transitions.

[3] If the call is synchronous, when the execution of the invoked behavior completes, its return results are transmitted back as
a reply to the calling action execution. The manner of transmitting the reply, the time required for transmission, the

UML Superstructure Specification, v2.0 239

representation of the reply transmission, and the transmission path are unspecified. If the execution of the invoked
behavior yields an exception, the exception is transmitted to the caller where it is reraised as an exception in the execution
of the calling action. Possible exception types may be specified by attaching them to the called Operation using the
raisedException association.

[4] If the call is asynchronous, the caller proceeds immediately and the execution of the call operation action is complete. Any
return or out values from the invoked operation are not passed back to the containing behavior. If the call is synchronous,
the caller is blocked from further execution until it receives a reply from the invoked behavior.

[5] When the reply transmission arrives at the invoking action execution, the return result values are placed on the result pins
of the call operation action, and the execution of the action is complete.

Semantic Variation Points

The mechanism for determining the method to be invoked as a result of a call operation is unspecified.

Notation

See “CallOperationAction (as specialized)” on page 339

Presentation Options

See “CallOperationAction (as specialized)” on page 339

Rationale

Calls an operation on a specified target object.

Changes from previous UML

Same as UML 1.5.
11.3.11 ClearAssociationAction (from IntermediateActions)
ClearAssociationAction is an action that destroys all links of an association in which a particular object participates.

Generalizations

- “Action (from BasicActions)” on page 230

Description

This action destroys all links of an association that have a particular object at one end.

Attributes
No additional attributes
Associations

e association : Association [1..1] Association to be cleared.

e object : InputPin [1..1] (Specialized from Action:input) Gives the input pin from which is obtained the object whose
participation in the association is to be cleared.

240 UML Superstructure Specification, v2.0

Constraints

[1] The type of the input pin must be the same as the type of at least one of the association ends of the association.
self.association->exists(end.type = self.object.type)

[2] The multiplicity of the input pinis 1..1.
self.object.multiplicity.is(1,1)

Semantics

This action has a statically-specified association. It has an input pin for a runtime object that must be of the same type as
at least one of the association ends of the association. All links of the association in which the object participates are
destroyed even when that violates the minimum multiplicity of any of the association ends. If the association is a class,
then link object identities are destroyed.

Notation

No specific notation

Rationale

ClearAssociationAction is introduced to remove all links from an association in which an object participates in a single
action, with no intermediate states where only some of the existing links are present.

Changes from previous UML

ClearAssociationAction is unchanged from UML 1.5.
11.3.12 ClearStructuralFeatureAction (from IntermediateActions)
ClearStructuralFeatureAction is a structural feature action that removes all values of a structural feature.

Generalizations

» “StructuralFeatureAction (from IntermediateActions)” on page 275

Description

This action removes all values of a structural feature.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

UML Superstructure Specification, v2.0 241

Semantics

All values are removed even when that violates the minimum multiplicity of the structural feature—the same as if the
minimum were zero. The semantics is undefined for a structural feature with isReadOnly = true after initialization of the
object owning the structural feature, unless the structural feature has no values. The action has no effect if the structural
feature has no values. If the feature is an association end, the semantics are the same as for ClearAssociationAction on the
object owning the structural feature.

Notation

No specific notation

Rationale

ClearStructuralFeatureAction is introduced to remove all values from a structural feature in a single action, with no
intermediate states where only some of the existing values are present.

Changes from previous UML

ClearStructuralFeatureAction is new in UML 2.0. It generalizes ClearAttributeAction from UML 1.5.
11.3.13 ClearVariableAction (from StructuredActions)

ClearVariableAction is a variable action that removes all values of a variable.

Generalizations

« “VariableAction (from StructuredActions)” on page 281

Description

This action removes all values of a variable.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

All values are removed even when that violates the minimum multiplicity of the variable—the same as if the minimum
were zero.

Notation

No specific notation

242 UML Superstructure Specification, v2.0

Rationale

ClearVariableAction is introduced to remove all values from a variable in a single action, with no intermediate states
where only some of the existing values are present.

Changes from previous UML

ClearVariableAction is unchanged from UML 1.5.
11.3.14 CreateLinkAction (from IntermediateActions)
(IntermediateActions) CreateLinkAction is a write link action for creating links.

Generalizations

« “WriteLinkAction (from IntermediateActions)” on page 281

Description

This action can be used to create links and link objects. There is no return value in either case. This is so that no change
of the action is required if the association is changed to an association class or vice versa. CreateLinkAction uses a
specialization of LinkEndData called LinkEndCreationData, to support ordered associations. The insertion point is
specified at runtime by an additional input pin, which is required for ordered association ends and omitted for unordered
ends. The insertion point is a positive integer giving the position to insert the link, or unlimited, to insert at the end.
Reinserting an existing end at a new position in an ordered unique structural feature moves the end to that position.

CreateLinkAction also uses LinkEndCreationData to support the destruction of existing links of the association that
connect any of the objects of the new link. When the link is created, this option is available on an end-by-end basis, and
causes all links of the association emanating from the specified ends to be destroyed before the new link is created.

Attributes

No additional attributes

Associations

e endData : LinkEndCreationData [2..*] (Redefined from LinkAction:endData)
Specifies ends of association and inputs.

Constraints
[1] The association cannot be an abstract classifier.

self.association().isAbstract = #false

Semantics

CreateLinkAction creates a link or link object for an association or association class. It has no output pin, because links
are not necessarily values that can be passed to and from actions. When the action creates a link object, the object could
be returned on output pin, but it is not for consistency with links. This allows actions to remain unchanged when an
association is changed to an association class or vice versa. The semantics of CreateLinkObjectAction applies to creating
link objects with CreateLinkAction.

UML Superstructure Specification, v2.0 243

This action also supports the destruction of existing links of the association that connect any of the objects of the new
link. This option is available on an end-by-end basis, and causes all links of the association emanating from the specified
ends to be destroyed before the new link is created. If the link already exists, then it is not destroyed under this option.
Otherwise, recreating an existing link has no effect if the structural feature is unordered and non-unique.

The semantics is undefined for creating a link for an association class that is abstract. The semantics is undefined for
creating a link that violates the upper multiplicity of one of its association ends. A new link violates the upper multiplicity
of an end if the cardinality of that end after the link is created would be greater than the upper multiplicity of that end.
The cardinality of an end is equal to the number of links with objects participating in the other ends that are the same as
those participating in those other ends in the new link, and with qualifier values on all ends the same as the new link, if
any.

The semantics is undefined for creating a link that has an association end with isReadOnly=true after initialization of the
other end objects, unless the link being created already exists. Objects participating in the association across from a
writeable end can have links created as long as the objects across from all read only ends are still being initialized. This
means that objects participating in links with two or more read only ends cannot have links created unless all the linked
objects are being initialized.

Creating ordered association ends requires an insertion point for a new link using the insertAt input pin of
LinkEndCreationData. The pin is of type UnlimitedNatural with multiplicity of 1..1. A pin value that is a positive integer
less than or equal to the current number of links means to insert the new link at that position in the sequence of existing
links, with the integer one meaning the new link will be first in the sequence. A value of unlimited for insertAt means to
insert the new link at the end of the sequence. The semantics is undefined for value of zero or an integer greater than the
number of existing links. The insertAt input pin does not exist for unordered association ends. Reinserting an existing end
at a new position in an ordered unique structural feature moves the end so that it is in the position specified after the
action is complete.

Notation

No specific notation

Rationale

CreateLinkAction is introduced to create links.

Changes from previous UML

CreateLinkAction is unchanged from UML 1.5.
11.3.15 CreateLinkObjectAction (from CompleteActions)
CreateLinkObjectAction creates a link object.

Generalizations

« “CreateLinkAction (from IntermediateActions)” on page 243

Description

This action is exclusively for creating links of association classes. It returns the created link object.

244 UML Superstructure Specification, v2.0

Attributes

No additional attributes

Associations

e result [1..1] : OutputPin [1..1] (Specialized from Action:output)
Gives the output pin on which the result is put.

Constraints

[1] The association must be an association class.
self.association().oclisKindOf(Class)

[2] The type of the result pin must be the same as the association of the action.
self.result.type = self.association()

[3] The multiplicity of the output pinis 1..1.
self.result.multiplicity.is(1,1)

Semantics

CreateLinkObjectAction inherits the semantics of CreateLinkAction, except that it operates on association classes to
create a link object. The additional semantics over CreateLinkAction is that the new or found link object is put on the
output pin. If the link already exists, then the found link object is put on the output pin. The semantics of
CreateObjectAction applies to creating link objects with CreateLinkObjectAction.

Notation

No specific notation

Rationale

CreateLinkObjectAction is introduced to create link objects in a way that returns the link object. Compare
CreateLinkAction.

Changes from previous UML

CreateLinkObjectAction is unchanged from UML 1.5.
11.3.16 CreateObjectAction (from IntermediateActions)

CreateObjectAction is an action that creates an object that conforms to a statically specified classifier and puts it on an
output pin at runtime.

Generalizations

« “Action (from BasicActions)” on page 230

Description

This action instantiates a classifier.

UML Superstructure Specification, v2.0 245

Attributes

No additional attributes

Associations
e classifier : Classifier [1..1] Classifier to be instantiated.

e result: OutputPin [1..1] (Specialized from Action:output) Gives the output pin on which the result is put.

Constraints

[1] The classifier cannot be abstract.
not (self.classifier.isAbstract = #true)

[2] The classifier cannot be an association class.
not self.classifier.oclisKindOf(AssociationClass)

[3] The type of the result pin must be the same as the classifier of the action.
self.result.type = self.classifier

[4] The multiplicity of the output pinis 1..1.
self.result.multiplicity.is(1,1)

Semantics

The new object is created, and the classifier of the object is set to the given classifier. The new object is returned as the
value of the action. The action has no other effect. In particular, no behaviors are executed, no initial expressions are
evaluated, and no state machine transitions are triggered. The new object has no structural feature values and participates
in no links.

Notation

No specific notation

Rationale

CreateObjectAction is introduced for creating new objects.

Changes from previous UML

Same as UML 1.5
11.3.17 DestroyLinkAction (from IntermediateActions)

DestroyLinkAction is a write link action that destroys links and link objects.

Generalizations

» “WriteLinkAction (from IntermediateActions)” on page 281.

246 UML Superstructure Specification, v2.0

Description

This action destroys a link or a link object. Link objects can also be destroyed with DestroyObjectAction. The link is
specified in the same way as link creation, even for link objects. This allows actions to remain unchanged when their
associations are transformed from ordinary ones to association classes and vice versa.

DestroyLinkAction uses a specialization of LinkEndData, called LinkEndDestructionData, to support ordered non-unique
associations. The position of the link to be destroyed is specified at runtime by an additional input pin, which is required
for ordered non-unique association ends and omitted for other kinds of ends. This is a positive integer giving the position
of the link to destroy.

DestroyLinkAction also uses LinkEndDestructionData to support the destruction of duplicate links of the association on
ends that are non-unique. This option is available on an end-by-end basis, and causes all duplicate links of the association
emanating from the specified ends to be destroyed.

Attributes

No additional attributes

Associations

e endData : LinkEndDestructionData [2..*] {Redefined from LinkAction::endData}
Specifies ends of association and inputs.

Constraints

No additional constraints

Semantics

Destroying a link that does not exist has no effect. The semantics of DestroyObjectAction applies to destroying a link that
has a link object with DestroyLinkAction.

The semantics is undefined for destroying a link that has an association end with isReadOnly = true after initialization of
the other end objects, unless the link being destroyed does not exist. Objects participating in the association across from
a writeable end can have links destroyed as long as the objects across from all read only ends are still being initialized.
This means objects participating in two or more readOnly ends cannot have links destroyed, unless all the linked objects
are being initialized.

Destroying links for non-unique ordered association ends requires identifying the position of the link using the input pin
of LinkEndDestructionData. The pin is of type UnlimitedNatural with multiplicity 1..1. A pin value that is a positive
integer less than or equal to the current number of links means to destroy the link at that position in the sequence of
existing links, with the integer one meaning the first link in the sequence. The semantics is undefined for value of zero,
for an integer greater than the number of existing links, and for unlimited. The destroyAt input pin only exists for ordered
non-unique association ends.

Notation

No specific notation

Rationale

DestroyLinkAction is introduced for destroying links.

UML Superstructure Specification, v2.0 247

Changes from previous UML

DestroyLinkAction is unchanged from UML 1.5.
11.3.18 DestroyObjectAction (from IntermediateActions)

DestroyObjectAction is an action that destroys objects.

Generalizations

« “Action (from BasicActions)” on page 230

Description

This action destroys the object on its input pin at runtime. The object may be a link object, in which case the semantics
of DestroyLinkAction also applies.
Attributes

* isDestroyLinks : Boolean = false Specifies whether links in which the object participates are destroyed along
with the object. Default value is false.

« isDestroyOwnedObjects : Boolean = false Specifies whether objects owned by the object are destroyed along with the
object. Default value is false.
Associations

e target : InputPin [1..1] (Specialized from Action:input) The input pin providing the object to be destroyed.

Constraints

[1] The multiplicity of the input pin is 1..1.
self.target.multiplicity.is(1,1)

[2] The input pin has no type.
self.target.type->size() = 0

Semantics

The classifiers of the object are removed as its classifiers, and the object is destroyed. The default action has no other
effect. In particular, no behaviors are executed, no state machine transitions are triggered, and references to the destroyed
objects are unchanged. If isDestroyLinks is true, links in which the object participates are destroyed along with the object
according to the semantics of DestroyLinkAction, except for link objects, which are destroyed according to the semantics
of DestroyObjectAction with the same attribute values as the original DestroyObjectAction. If isDestroyOwnedObjects is
true, objects owned by the object are destroyed according to the semantics of DestroyObjectAction with the same
attribute values as the original DestroyObjectAction.

Destroying an object that is already destroyed has no effect.

Notation

No specific notation

248 UML Superstructure Specification, v2.0

Rationale

DestroyObjectAction is introduced for destroying objects.

Changes from previous UML

Same as UML 1.5
11.3.19 InputPin (from BasicActions)

Generalizations

» “Pin (from BasicActions)” on page 256

Description

An input pin is a pin that holds input values to be consumed by an action.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

An action cannot start execution if an input pin has fewer values than the lower multiplicity. The upper multiplicity
determines how many values are consumed by a single execution of the action.

Notation

No specific notation. See extensions in Activities.
Rationale

Changes from previous UML

InputPin is the same concept as in UML 1.5, but modeled independently of the behaviors that use it.
11.3.20 InvocationAction (from BasicActions)

Generalizations

« “Action (from BasicActions)” on page 230

Description

Invocation is an abstract class for the various actions that invoke behavior.

UML Superstructure Specification, v2.0 249

Attributes

No additional attributes

Associations

e argument : InputPin [0..*] Specification of an argument value that appears during execution.

Constraints

No additional constraints

Semantics

See children of InvocationAction.
11.3.21 LinkAction (from IntermediateActions)

LinkAction is an abstract class for all link actions that identify their links by the objects at the ends of the links and by
the qualifiers at ends of the links.

Generalizations

« “Action (from BasicActions)” on page 230

Description

A link action creates, destroys, or reads links, identifying a link by its end objects and qualifier values, if any.

Attributes

No additional attributes

Associations

« endData: LinkEndData [2..*] Data identifying one end of a link by the objects on its ends and
qualifiers.

e input: InputPin [1..*] (Specialized from Action:input)Pins taking end objects and qualifier values as input.

Constraints
[1] The association ends of the link end data must all be from the same association and include all and only the association
ends of that association.
self.endData->collect(end) = self.association()->collect(connection))
[2] The association ends of the link end data must not be static.
self.endData->forall(end.oclisKindOf(NavigableEnd) implies end.isStatic = #false)
[3] The input pins of the action are the same as the pins of the link end data and insertion pins.
self.input->asSet() =
let ledpins : Set = self.endData->collect(value) in
if self.oclisKindOf(LinkEndCreationData)
then ledpins->union(self.endData.oclAsType(LinkEndCreationData).insertAt)
else ledpins

250 UML Superstructure Specification, v2.0

Additional operations:

[1] association operates on LinkAction. It returns the association of the action.
association();
association = self.endData->asSequence().first().end.association

Constraints

[1] The input pins of the action are the same as the pins of the link end data, qualifier values, and insertion pins.
self.input->asSet() =
let ledpins : Set =
if self.endData.ocllsKindOf(CompleteActions::LinkEndData)
then self.endData->collect(value)->union(self.endData.qualifier.value)
else self.endData->collect(value) in
if self.oclisKindOf(LinkEndCreationData)
then ledpins->union(self.endData.oclAsType(LinkEndCreationData).insertAt)
else ledpins

Semantics

For actions that write links, all association ends must have a corresponding input pin so that all end objects are specified
when creating or deleting a link. An input pin identifies the end object by being given a value at runtime. It has the type
of the association end and multiplicity of 1..1, since a link always has exactly one object at its ends.

The behavior is undefined for links of associations that are static on any end.

For the semantics of link actions see the children of LinkAction.

Notation

No specific notation

Rationale
LinkAction is introduced to abstract aspects of link actions that identify links by the objects on their ends.

In CompleteActions, LinkAction is extended for qualifiers.

Changes from previous UML

LinkAction is unchanged from UML 1.5.
11.3.22 LinkEndCreationData (from IntermediateActions, CompleteActions)

LinkEndCreationData is not an action. It is an element that identifies links. It identifies one end of a link to be created by
CreateLinkAction.

Generalizations

» “LinkEndData (from IntermediateActions, CompleteActions)” on page 253.

UML Superstructure Specification, v2.0 251

Description

This class is required when using CreateLinkAction to specify insertion points for ordered ends and for replacing all links
at end. A link cannot be passed as a runtime value to or from an action. Instead, a link is identified by its end objects and
qualifier values, as required. This requires more than one piece of data, namely, the statically-specified end in the user
model, the object on the end, and the qualifier values for that end. These pieces are brought together around
LinkEndData. Each association end is identified separately with an instance of the LinkEndData class.

Qualifier values are used in CompleteActions.

Attributes

« isReplaceAll : Boolean [1..1] =false Specifies whether the existing links emanating from the object on this end should
be destroyed before creating a new link.

Associations

e insertAt: InputPin [0..1]
Specifies where the new link should be inserted for ordered association ends, or where an existing link should be moved
to. The type of the input is UnlimitedNatural, but the input cannot be zero. This pin is omitted for association ends that are
not ordered.

Constraints

[1] LinkEndCreationData can only be end data for CreateLinkAction or one of its specializations.
self.LinkAction.ocllsKindOf(CreateLinkAction)

[2] Link end creation data for ordered association ends must have a single input pin for the insertion point with type
UnlimitedNatural and multiplicity of 1..1, otherwise the action has no input pin for the insertion point.

let insertAtPins : Collection = self.insertAt in

if self.end.ordering = #unordered

then insertAtPins->size() = 0

else let insertAtPin : InputPin = insertAts->asSequence()->first() in
insertAtPins->size() = 1
and insertAtPin.type = UnlimitedNatural
and insertAtPin.multiplicity.is(1,1))

endif

Semantics

See CreateLinkAction, also see LinkAction and all its children.

Notation

No specific notation

Rationale

LinkEndCreationData is introduced to indicate which inputs are for which link end objects and qualifiers.

252 UML Superstructure Specification, v2.0

Changes from previous UML

LinkEndCreationData is unchanged from UML 1.5.
11.3.23 LinkEndData (from IntermediateActions, CompleteActions)

Generalizations

» “Element (from Kernel)” on page 60
Description

Package IntermediateActions

LinkEndData is not an action. It is an element that identifies links. It identifies one end of a link to be read or written by
the children of LinkAction. A link cannot be passed as a runtime value to or from an action. Instead, a link is identified
by its end objects and qualifier values, if any. This requires more than one piece of data, namely, the statically-specified
end in the user model, the object on the end, and the qualifier values for that end, if any. These pieces are brought
together around LinkEndData. Each association end is identified separately with an instance of the LinkEndData class.

Attributes

No additional attributes

Associations

e end: Property [1..1] Association end for which this link-end data specifies values.

e value : InputPin [0..1] Input pin that provides the specified object for the given end. This pin is omitted if the link-end
data specifies an “open” end for reading.

Associations

Package CompleteActions

o qualifier : QualifierValue [*] List of qualifier values.

Constraints

[1] The property must be an association end.
self.end.association->size() = 1

[2] The type of the end object input pin is the same as the type of the association end.
self.value.type = self.end.type

[3] The multiplicity of the end object input pin must be “1..1.”
self.value.multiplicity.is(1,1)

Constraints

Package CompleteActions

[1] The qualifiers include all and only the qualifiers of the association end.
self.qualifier->collect(qualifier) = self.end.qualifier

UML Superstructure Specification, v2.0 253

[2] The end object input pin is not also a qualifier value input pin.
self.value->excludesAll(self.qualifier.value)

Semantics

See LinkAction and its children.

Notation

No specific notation

Rationale

LinkEndData is introduced to indicate which inputs are for which link end objects and qualifiers.

Changes from previous UML

LinkEndData is unchanged from UML 1.5.
11.3.24 LinkEndDestructionData (from IntermediateActions)

LinkEndDestructionData is not an action. It is an element that identifies links. It identifies one end of a link to be
destroyed by DestroyLinkAction.

Generalizations

» “LinkEndData (from IntermediateActions, CompleteActions)” on page 253.

Description

This class is required when using DestroyLinkAction, to specify links to destroy for non-unique ordered ends. A link
cannot be passed as a runtime value to or from an action. See description of “LinkEndData (from IntermediateActions,
CompleteActions)” on page 253.

Qualifier values are used in CompleteActions.

Attributes

« isDestroyDuplicates : Boolean = false Specifies whether to destroy duplicates of the value in non-unique
association ends.

Associations

e destroyAt : InputPin [0..1] Specifies the position of an existing link to be destroyed in ordered non-unique
association ends. The type of the pin is UnlimitedNatural, but the value cannot be
zero or unlimited.

Constraints

[1] LinkEndDestructionData can only be end data for DestroyLinkAction or one of its specializations.

[2] LinkEndDestructionData for ordered non-unique association ends must have a single destroyAt input pin if
isDestroyDuplicates is false. It must be of type UnlimitedNatural and have a multiplicity of 1..1. Otherwise, the action has
no input pin for the removal position.

254 UML Superstructure Specification, v2.0

Semantics

See “DestroyLinkAction (from IntermediateActions)” on page 246, also see “LinkAction (from IntermediateActions)” on
page 250 and all of its subclasses.

Notation

No specific notation

Rationale

LinkeEndDestructionData is introduced to indicate which links to destroy for ordered non-unique ends.
11.3.25 MultiplicityElement (from BasicActions)

Generalizations

« “MultiplicityElement (from Kernel)” on page 90 (merge increment)

Operations

[1] The operation compatibleWith takes another multiplicity as input. It checks if one multiplicity is compatible with another.
compatibleWith(other : Multiplicity) : Boolean;
compatibleWith(other) = Integer.allinstances()->
forAll(i : Integer | self.includesCardinality(i) implies other.includesCardinality(i))

[2] The operation is determines if the upper and lower bound of the ranges are the ones given.

is(lowerbound : integer, upperbound : integer) : Boolean
is(lowerbound, upperbound) = (lowerbound = self.lowerbound and upperbound = self.upperbound)

11.3.26 OpaqueAction (from BasicActions)

Generalizations

« “Pin (from BasicActions)” on page 256

Description

An action with implementation-specific semantics.

Attributes
e body : String [1..*] Specifies the action in one or more languages.
e language : String [*] Languages the body strings use, in the same order as the body strings.

Associations

No additional associations

Constraints

No additional constraints

UML Superstructure Specification, v2.0 255

Semantics

The semantics of the action are determined by the implementation.

Notation

No specific notation

Rationale

OpaqueAction is introduced for implementation-specific actions or for use as a temporary placeholder before some other
action is chosen.

11.3.27 OutputPin (from BasicActions)

Generalizations

« “Pin (from BasicActions)” on page 256

Description

An output pin is a pin that holds output values produced by an action.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

An action cannot terminate itself if an output pin has fewer values than the lower multiplicity. An action may not put
more values in an output pin in a single execution than the upper multiplicity of the pin.

Notation

No specific notation. See extensions in Activities.

Changes from previous UML

OutputPin is the same concept as in UML 1.5, but modeled independently of the behaviors that use it.
11.3.28 Pin (from BasicActions)

Generalizations

« “MultiplicityElement (from BasicActions)” on page 255

256 UML Superstructure Specification, v2.0

« “TypedElement (from Kernel)” on page 131

Description

A pin is a typed element and multiplicity element that provides provide values to actions and accept result values from
them.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] If the action is an invocation action, the number and types of pins must be the same as the number of parameters and
types of the invoked behavior or behavioral feature. Pins are matched to parameters by order.

Semantics

A pin represents an input to an action or an output from an action. The definition on an action assumes that pins are
ordered.

Pin multiplicity controls action execution, not the number of tokens in the pin (see upperBound on “ObjectNode (from
BasicActivities, CompleteActivities)” on page 380). See “InputPin (from BasicActions)” and “OutputPin (from
BasicActions)” for semantics of multiplicity. Pin multiplicity is not unique, because multiple tokens with the same value
can reside in an object node.

Notation

No specific notation. See extensions in Activities.

Rationale

Pins are introduced to model inputs and outputs of actions.

Changes from previous UML

Pin is the same concept as in UML 1.5, but modeled independently of the behaviors that use it.
11.3.29 QualifierValue (from CompleteActions)

QualifierValue is not an action. It is an element that identifies links. It gives a single qualifier within a link end data
specification. See LinkEndData.

Generalizations

» “Element (from Kernel)” on page 60

UML Superstructure Specification, v2.0 257

Description

A link cannot be passed as a runtime value to or from an action. Instead, a link is identified by its end objects and
qualifier values, as required. This requires more than one piece of data, namely, the end in the user model, the object on
the end, and the qualifier values for that end. These pieces are brought together around LinkEndData. Each association
end is identified separately with an instance of the LinkEndData class.

Attributes

No additional attributes

Associations
e qualifier : Property [1..1] Attribute representing the qualifier for which the value is to be specified.

e value: InputPin [1..1] Input pin from which the specified value for the qualifier is taken.

Constraints

[1] The qualifier attribute must be a qualifier of the association end of the link-end data.
self.LinkEndData.end->collect(qualifier)->includes(self.qualifier)

[2] The type of the qualifier value input pin is the same as the type of the qualifier attribute.
self.value.type = self.qualifier.type

[3] The multiplicity of the qualifier value input pin is “1..1.”
self.value.multiplicity.is(1,1)

Semantics

See LinkAction and its children.

Notation

No specific notation

Rationale

QualifierValue is introduced to indicate which inputs are for which link end qualifiers.

Changes from previous UML

QualifierValue is unchanged from UML 1.5.
11.3.30 RaiseExceptionAction (from StructuredActions)

Generalizations

« “Action (from BasicActions)” on page 230

Description

RaiseExceptionAction is an action that causes an exception to occur. The input value becomes the exception object.

258 UML Superstructure Specification, v2.0

Attributes

No additional attributes

Associations
e exception : InputPin [1..1] An input pin whose value becomes an exception object.
Semantics

When a raise exception action is executed, the value on the input pin is raised as an exception. The value may be copied
in this process, so identity may not be preserved. Raising the exception terminates the immediately containing structured
node or activity and begins a search of enclosing nested scopes for an exception handler that matches the type of the
exception object. See “ExceptionHandler (from ExtraStructuredActivities)” on page 351 for details of handling
exceptions.

Notation

No specific notation

Rationale

Raise exception action allows models to generate exceptions. Otherwise the only exception types would be predefined
built-in exception types, which would be too restrictive.

Changes from previous UML

RaiseExceptionAction replaces JumpAction from UML 1.5. Their behavior is essentially the same, except that it is no
longer needed for performing simple control constructs such as break and continue.

11.3.31 ReadExtentAction (from CompleteActions)

Generalizations

« “Action (from BasicActions)” on page 230

Description

ReadExtentAction is an action that retrieves the current instances of a classifier.

Attributes

No additional attributes
Associations

e classifier : Classifier [1..1] The classifier whose instances are to be retrieved.

e result: OutputPin [1..1] The runtime instances of the classifier.

Constraints
[1] The type of the result output pin is the classifier.
[2] The multiplicity of the result output pin is “0..*.”

UML Superstructure Specification, v2.0 259

self.result.multiplicity.is(0,#null)

Semantics

The extent of a classifier is the set of all instances of a classifier that exist at any one time.

Semantic Variation Points

It is not generally practical to require that reading the extent produce all the instances of the classifier that exist in the
entire universe. Rather, an execution engine typically manages only a limited subset of the total set of instances of any
classifier and may manage multiple distributed extents for any one classifier. It is not formally specified which managed
extent is actually read by a ReadExtentAction.

Notation

No specific notation

Rationale

ReadExtentAction is introduced to provide access to the runtime instances of a classifier.

Changes from previous UML

ReadExtentAction is unchanged from UML 1.5.
11.3.32 ReadlsClassifiedObjectAction (from CompleteActions)

ReadlsClassifiedObjectAction is an action that determines whether a runtime object is classified by a given classifier.

Generalizations

« “Action (from BasicActions)” on page 230

Description

This action tests the classification of an object against a given class. It can be restricted to testing direct instances.

Attributes

» isDirect : Boolean [1..1] Indicates whether the classifier must directly classify the input object. The default value is
false.

Associations

» classifier : Classifier [1..1] The classifier against which the classification of the input object is tested.

e object : InputPin [1..1] Holds the object whose classification is to be tested. (Specializes Action.input.)

e result: OutputPin [1..1] After termination of the action, will hold the result of the test. (Specializes Action.output.)

Constraints

[1] The multiplicity of the input pin is 1..1.
self.object.multiplicity.is(1,1)
[2] The input pin has no type.

260 UML Superstructure Specification, v2.0

self.object.type->isEmpty()
[3] The multiplicity of the output pin is 1..1.
self.result.multiplicity.is(1,1)

[4] The type of the output pin is Boolean.
self.result.type = Boolean

Semantics

The action returns true if the input object is classified by the specified classifier. It returns true if the isDirect attribute is
false and the input object is classified by the specified classifier, or by one of its (direct or indirect) descendents.
Otherwise, the action returns false.

Notation

No specific notation

Rationale

ReadisClassifiedObjectAction is introduced for run-time type identification.

Changes from previous UML

ReadisClassifiedObjectAction is unchanged from UML 1.5.
11.3.33 ReadLinkAction (from IntermediateActions)
ReadLinkAction is a link action that navigates across associations to retrieve objects on one end.

Generalizations

» “LinkAction (from IntermediateActions)” on page 250

Description

This action navigates an association towards one end, which is the end that does not have an input pin to take its object
(the “open” end). The objects put on the result output pin are the ones participating in the association at the open end,
conforming to the specified qualifiers, in order if the end is ordered. The semantics is undefined for reading a link that
violates the navigability or visibility of the open end.

Attributes
No additional attributes

Associations

e result: OutputPin [1] (Specialized from Action:output) The pin on which are put the objects participating in the
association at the end not specified by the inputs.

Constraints

[1] Exactly one link-end data specification (the “open” end) must not have an end object input pin.
self.endData->select(ed | ed.value->size() = 0)->size() = 1

UML Superstructure Specification, v2.0 261

[2] The type and ordering of the result output pin are the same as the type and ordering of the open association end.

let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
self.result.type = openend.type
and self.result.ordering = openend.ordering
[3] The multiplicity of the open association end must be compatible with the multiplicity of the result output pin.
let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.multiplicity.compatibleWith(self.result.multiplicity)
[4] The open end must be navigable.
let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.isNavigable()
[5] Visibility of the open end must allow access to the object performing the action.
let host : Classifier = self.context in
let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.visibility = #public
or self.endData->exists(oed | not oed.end = openend
and (host = oed.end.participant
or (openend.visibility = #protected
and host.allSupertypes->includes(oed.end.participant))))

Semantics

Navigation of a binary association requires the specification of the source end of the link. The target end of the link is not
specified. When qualifiers are present, one navigates to a specific end by giving objects for the source end of the
association and qualifier values for all the ends. These inputs identify a subset of all the existing links of the association
that match the end objects and qualifier values. The result is the collection of objects for the end being navigated towards,
one object from each identified link.

In a ReadLinkAction, generalized for n-ary associations, one of the link-end data must have an unspecified object (the
“open” end). The result of the action is a collection of objects on the open end of links of the association, such that the
links have the given objects and qualifier values for the other ends and the given qualifier values for the open end. This
result is placed on the output pin of the action, which has a type and ordering given by the open end. The multiplicity of
the open end must be compatible with the multiplicity of the output pin. For example, the modeler can set the multiplicity
of this pin to support multiple values even when the open end only allows a single value. This way the action model will
be unaffected by changes in the multiplicity of the open end. The semantics are defined only when the open end is
navigable, and visible to the host object of the action.

Notation

No specific notation

Rationale

ReadLinkAction is introduced to navigate across links.

Changes from previous UML

ReadLinkAction is unchanged from UML 1.5.

262 UML Superstructure Specification, v2.0

11.3.34 ReadLinkObjectEndAction (from CompleteActions)
ReadLinkObjectEndAction is an action that retrieves an end object from a link object.

Generalizations

« “Action (from BasicActions)” on page 230

Description

This action reads the object on an end of a link object. The association end to retrieve the object from is specified
statically, and the link object to read is provided on the input pin at run time.

Attributes

No additional attributes

Associations
e end: Property [1..1] Link end to be read.
e object: InputPin [1..1] (Specialized from Action:input) Gives the input pin from which the link object is obtained.

e result: OutputPin [1..1] Pin where the result value is placed.

Constraints

[1] The property must be an association end.
self.end.association.notEmpty()

[2] The association of the association end must be an association class.
self.end.Association.oclisKindOf(AssociationClass)

[3] The ends of the association must not be static.
self.end.association.memberEnd->forall(e | not e.isStatic)

[4] The type of the object input pin is the association class that owns the association end.
self.object.type = self.end.association

[5] The multiplicity of the object input pin is “1..1.”
self.object.multiplicity.is(1,1)

[6] The type of the result output pin is the same as the type of the association end.
self.result.type = self.end.type

[71 The multiplicity of the result output pinis 1..1.
self.result.multiplicity.is(1,1)

Semantics

ReadLinkObjectEndAction retrieves an end object from a link object.

Notation

No specific notation

UML Superstructure Specification, v2.0 263

Rationale

ReadLinkObjectEndAction is introduced to navigate from a link object to its end objects.

Changes from previous UML

ReadLinkObjectEndAction is unchanged from UML 1.5.
11.3.35 ReadLinkObjectEndQualifierAction (from CompleteActions)

ReadLinkObjectEndAction is an action that retrieves a qualifier end value from a link object.

Generalizations

« “Action (from BasicActions)” on page 230

Description

This action reads a qualifier value or values on an end of a link object. The association end to retrieve the qualifier from
is specified statically, and the link object to read is provided on the input pin at run time.

Attributes

No additional attributes

Associations
e qualifier : Property [1..1] The attribute representing the qualifier to be read.
e object : InputPin [1..1] (Specialized from Action:input) Gives the input pin from which the link object is obtained.

e result: OutputPin [1..1] Pin where the result value is placed.

Constraints

[1] The qualifier attribute must be a qualifier attribute of an association end.
self.qualifier.associationEnd->size() = 1

[2] The association of the association end of the qualifier attribute must be an association class.
self.qualifier.associationEnd.association.oclisKindOf(AssociationClass)

[3] The ends of the association must not be static.
self.qualifier.associationEnd.association.memberEnd->forall(e | not e.isStatic)

[4] The type of the object input pin is the association class that owns the association end that has the given qualifier attribute.
self.object.type = self.qualifier.associationEnd.association

[5] The multiplicity of the qualifier attribute is 1..1.
self.qualifier.multiplicity.is(1,1)

[6] The multiplicity of the object input pin is “1..1.”
self.object.multiplicity.is(1,1)

[7]1 The type of the result output pin is the same as the type of the qualifier attribute.
self.result.type = self.qualifier.type

[8] The multiplicity of the result output pin is “1..1.”

264 UML Superstructure Specification, v2.0

self.result.multiplicity.is(1,1)

Semantics

ReadLinkObjectEndAction retrieves a qualifier end value from a link object.

Notation

No specific notation

Rationale

ReadLinkObjectEndQualifierAction is introduced to navigate from a link object to its end objects.

Changes from previous UML

ReadLinkObjectEndQualifierAction is unchanged from UML 1.5, except the name was corrected from
ReadLinkObjectQualifierAction.

11.3.36 ReadSelfAction (from IntermediateActions)

ReadSelfAction is an action that retrieves the host object of an action.

Generalizations

« “Action (from BasicActions)” on page 230

Description

Every action is ultimately a part of some behavior, which is in turn optionally attached in some way to the specification
of a classifier (for example, as the body of a method or as part of a state machine). When the behavior executes, it does
so in the context of some specific host instance of that classifier. This action produces this host instance, if any, on its
output pin. The type of the output pin is the classifier to which the behavior is associated in the user model.

Attributes

No additional attributes

Associations

e result: OutputPin [1..1] (Specialized from Action:output) Gives the output pin on which the hosting object is
placed.

Constraints
[1] The action must be contained in a behavior that has a host classifier.
self.context->size() = 1

[2] If the action is contained in a behavior that is acting as the body of a method, then the operation of the method must not be
static.

[3] The type of the result output pin is the host classifier.
self.result.type = self.context
[4] The multiplicity of the result output pin is “1..1.”

UML Superstructure Specification, v2.0 265

self.result.multiplicity.is(1,1)

Semantics

Every action is part of some behavior, as are behaviors invoked by actions or other elements of behaviors. Behaviors are
optionally attached in some way to the specification of a classifier.

For behaviors that have no other context object, the behavior itself is the context object. See behaviors as classes in
Common Behaviors and discussion of reflective objects in Activity (from BasicActivities, CompleteActivities,
Fundamental Activities, StructuredActivities).

Notation

No specific notation

Rationale

ReadSelfAction is introduced to provide access to the context object when it is not available as a parameter.

Changes from previous UML

ReadSelfAction is unchanged from UML 1.5.
11.3.37 ReadStructuralFeatureAction (from IntermediateActions)

ReadStructuralFeatureAction is a structural feature action that retrieves the values of a structural feature.

Generalizations

 “StructuralFeatureAction (from IntermediateActions)” on page 275.

Description

This action reads the values of a structural feature in order if the structural feature is ordered.

Attributes

No additional attributes

Associations

e result: OutputPin [1..1] (Specialized from Action:output) Gives the output pin on which the result is put.

Constraints

[1] The type and ordering of the result output pin are the same as the type and ordering of the structural feature.
self.result.type = self.structuralFeature.type
and self.result.ordering = self.structuralFeature.ordering

[2] The multiplicity of the structural feature must be compatible with the multiplicity of the output pin.
self.structuralFeature.multiplicity.compatibleWith(self.result.multiplicity)

266 UML Superstructure Specification, v2.0

Semantics

The values of the structural feature of the input object are placed on the output pin of the action. If the feature is an
association end, the semantics are the same as reading links of the association with the feature as the open end. The type
and ordering of the output pin are the same as the specified structural feature. The multiplicity of the structural feature
must be compatible with the multiplicity of the output pin. For example, the modeler can set the multiplicity of this pin to
support multiple values even when the structural feature only allows a single value. This way the action model will be
unaffected by changes in the multiplicity of the structural feature.

Notation

No specific notation

Rationale

ReadStructuralFeatureAction is introduced to retrieve the values of a structural feature.

Changes from previous UML

ReadStructuralFeatureAction is new in UML 2.0. It generalizes ReadAttributeAction from UML 1.5.
11.3.38 ReadVariableAction (from StructuredActions)
ReadVariableAction is a variable action that retrieves the values of a variable.

Generalizations

» “VariableAction (from StructuredActions)” on page 281.

Description

This action reads the values of a variable in order if the variable is ordered.

Attributes

No additional attributes

Associations

e result: OutputPin [1..1] (Specialized from Action:output) Gives the output pin on which the result is put.

Constraints

[1] The type and ordering of the result output pin of a read-variable action are the same as the type and ordering of the
variable.
self.result.type =self.variable.type
and self.result.ordering = self.variable.ordering

[2] The multiplicity of the variable must be compatible with the multiplicity of the output pin.
self.variable.multiplicity.compatibleWith(self.result.multiplicity)

UML Superstructure Specification, v2.0 267

Semantics

The values of the variable are placed on the output pin of the action. The type and ordering of the output pin are the same
as the specified variable. The multiplicity of the variable must be compatible with the multiplicity of the output pin. For
example, the modeler can set the multiplicity of this pin to support multiple values even when the variable only allows a
single value. This way the action model will be unaffected by changes in the multiplicity of the variable.

Notation

No specific notation

Rationale

ReadVariableAction is introduced to retrieve the values of a variable.

Changes from previous UML

ReadVariableAction is unchanged from UML 1.5.
11.3.39 ReclassifyObjectAction (from CompleteActions)

ReclassifyObjectAction is an action that changes which classifiers classify an object.

Generalizations

« “Action (from BasicActions)” on page 230

Description

ReclassifyObjectAction adds given classifier to an object and removes given classifiers from that object. Multiple

classifiers may be added and removed at a time.

Attributes

* isReplaceAll : Boolean [1..1] Specifies whether existing classifiers should be removed before adding the new
classifiers. The default value is false.

Associations

e object : InputPin [1..1] Holds the object to be reclassified. (Specializes Action.input.)

e newClassifier : Classifier [0..*] A set of classifiers to be added to the classifiers of the object.

« oldClassifier : Classifier [0..*] A set of classifiers to be removed from the classifiers of the object.

Constraints

[1] None of the new classifiers may be abstract.
not self.newClassifier->exists(isAbstract = true)

[2] The multiplicity of the input pin is 1..1.
self.argument.multiplicity.is(1,1)

[3] The input pin has no type.
self.argument.type->size() = 0

268 UML Superstructure Specification, v2.0

Semantics

After the action completes, the input object is classified by its existing classifiers and the “new” classifiers given to the
action; however, the “old” classifiers given to the actions no longer classify the input object. The identity of the object is
preserved, no behaviors are executed, and no initial expressions are evaluated. “New” classifiers replace existing
classifiers in an atomic step, so that structural feature values and links are not lost during the reclassification, when the
“old” and “new” classifiers have structural features and associations in common.

Neither adding a classifier that duplicates an already existing classifier, nor removing a classifier that is not classifying
the input object, has any effect. Adding and removing the same classifiers has no effect.

If isReplaceAll is true, then the existing classifiers are removed before the “new” classifiers are added, except if the
“new” classifier already classifies the input object, in which case this classifier is not removed. If isReplaceAll is false,
then adding an existing value has no effect.

It is an error, if any of the “new” classifiers is abstract or if all classifiers are removed from the input object.

Notation

No specific notation

Rationale

ReclassifyObjectAction is introduced to change the classifiers of an object.

Changes from previous UML

ReclassifyObjectAction is unchanged from UML 1.5.
11.3.40 RemovesStructuralFeatureValueAction (from IntermediateActions)
RemoveStructuralFeatureValueAction is a write structural feature action that removes values from structural features.

Generalizations

« “WriteStructuralFeatureAction (from IntermediateActions)” on page 282.

Description

The object to access is specified dynamically, by referring to an input pin on which the object will be placed at runtime.
The type of the value of this pin is the classifier that owns the specified structural feature, and the value’s multiplicity is
1.1.

Structural features are potentially multi-valued and ordered, and may support duplicates, so the action supports
specification of removal points for new values. It also supports the removal of all duplicate values.

Attributes

« isRemoveDuplicates : Boolean = false [1..1] Specifies whether to remove duplicates of the value in non-unique
structural features.

UML Superstructure Specification, v2.0 269

Associations

e removeAt : InputPin [0..1] Specifies the position of an existing value to remove in ordered non-unique structural
features. The type of the pin is Unlimitednatural, but the value cannot be zero or
unlimited.

Constraints

[1] Actions removing a value from ordered non-unique structural features must have a single removeAt input pin if
isRemoveDuplicates is false. It must be of type Unlimited Natural with multiplicity 1..1. Otherwise, the action has no
removeAt input pin.

Semantics

Structural features are potentially multi-valued. Removing a value succeeds even when it violates the minimum
multiplicity. Removing a value that does not exist has no effect. If the feature is an association end, the semantics are the
same as for destroying links, the participants of which are the object owning the structural feature and the value being
removed.

Values of a structural feature may be duplicate in non-unique structural features. The isRemoveDuplicates attribute
indicates whether to remove all duplicates of the specified value. The removeAt input pin is required if
isRemoveDuplicates is false in ordered non-unique structural features. It indicates the position of an existing value to
remove. It must be a positive integer less than or equal to the current number of values. The semantics is undefined for
zero or an integer greater than the number of existing values, and for unlimited.

The semantics is undefined for removing an existing value for a structural feature with isReadOnly=true. The semantics
is undefined for removing an existing value of a structural feature with settability readOnly after initialization of the
owning object.

Notation

No specific notation

Rationale

RemoveStructuralFeatureValueAction is introduced to remove structural feature values.

Changes from previous UML

RemoveStructuralFeatureValueAction is new in UML 2.0. It generalizes RemoveAttributeValueAction in UML 2.0.
11.3.41 RemoveVariableValueAction (from StructuredActions)

RemoveVariableValueAction is a write variable action that removes values from variables.

Generalizations

« “WriteVariableAction (from StructuredActions)” on page 283

Description

One value is removed from the set of possible variable values.

270 UML Superstructure Specification, v2.0

Attributes

« isRemoveDuplicates : Boolean = false [1..1] Specifies whether to remove duplicates of the value in non-unique
variables.

Associations

e removeAt : InputPin [0..1] Specifies the position of an existing value to remove in ordered non-unique variables. The
type of the pin is UnlimitedNatural, but the value cannot be zero or unlimited.

Constraints

[1] Actions removing a value from ordered non-unique variables must have a single removeAt input pin if
isRemoveDuplicates is false. It must be of type UnlimitedNatural with multiplicity of 1..1, otherwise the action has no
removeAt input pin.

Semantics

Variables are potentially multi-valued. Removing a value succeeds even when it violates the minimum multiplicity.
Removing a value that does not exist has no effect. Variables are potentially multi-valued and ordered, and may support
duplicates, so the action supports specification of removal points for new values. It also supports the removal of all
duplicate values.

Values of a variable may be duplicate in non-unique variables. The isRemoveDuplicates attribute indicates whether to
remove all duplicates of the specified value. The removeAt input pin is required if isRemoveDuplicates is false in ordered
non-unique variables. It indicates the position of an existing value to remove. It must be a positive integer less than or
equal to the current number of values. The semantics is undefined for zero, for an integer greater than the number of
existing values and for unlimited.

Notation

No specific notation

Rationale

RemoveVariableValueAction is introduced to remove variable values.

Changes from previous UML

RemoveVariableValueAction is unchanged from UML 1.5.
11.3.42 ReplyAction (from CompleteActions)

Generalizations

» “AcceptEventAction (from CompleteActions)” on page 228

Description

ReplyAction is an action that accepts a set of return values and a value containing return information produced by a
previous accept call action. The reply action returns the values to the caller of the previous call, completing execution of
the call.

UML Superstructure Specification, v2.0 271

Attributes

No additional attributes

Associations

e replyToCall : Trigger [1..1] The trigger specifying the operation whose call is being replied to.
e replyValue : OutputPin [0..*] A list of pins containing the reply values of the operation. These values are returned
to the caller.

e returninformation : InputPin [1..1] A pin containing the return information value produced by an earlier
AcceptCallAction.

Constraints

[1] The reply value pins must match the return, out, and inout parameters of the operation on the event on the trigger in
number, type, and order.

[2] The event on replyToCall trigger must be a CallEvent.
replyToCallEvent.ocllsKindOf(CallEvent)

Semantics

The execution of a reply action completes the execution of a call that was initiated by a previous AcceptCallAction. The
two are connected by the returninformation value, which is produced by the AcceptCallAction and consumed by the
ReplyAction. The information in this value is used by the execution engine to return the reply values to the caller and to
complete execution of the original call. The details of transmitting call requests, encoding return information, and
transmitting replies are opaque and unavailable to models, therefore they need not be and are not specified in this
document.

Return information may be copied, stored in objects, and passed around, but it may only be used in a reply action once.
If the same return information value is supplied to a second ReplyAction, the execution is in error and the behavior of the
system is unspecified. It is not intended that any profile give any other meaning the return information. The operation
specified by the call event on the trigger must be consistent with the information returned at runtime.

If the return information is lost to the execution or if a reply is never made, the caller will never receive a reply and
therefore will never complete execution. This is not inherently illegal but it represents an unusual situation at the very
least.

11.3.43 SendObjectAction (from IntermediateActions)

Generalizations

» “InvocationAction (from BasicActions)” on page 249

Description

SendObjectAction is an action that transmits an object to the target object, where it may invoke behavior such as the
firing of state machine transitions or the execution of an activity. The value of the object is available to the execution of
invoked behaviors. The requestor continues execution immediately. Any reply message is ignored and is not transmitted
to the requestor.

272 UML Superstructure Specification, v2.0

Attributes

No additional attributes

Associations

e request: InputPin [1] The request object, which is transmitted to the target object. The object may be copied in
transmission, so identity might not be preserved. (Specialized from
InvocationActon.argument)

e target: InputPin [1] The target object to which the object is sent.

Constraints

No additional constraints

Semantics

[1] When all the control and data flow prerequisites of the action execution are satisfied, the object on the input pin is
transmitted to the target object. The target object may be local or remote. The object on the input pin may be copied
during transmission, so identity might not be preserved. The manner of transmitting the object, the amount of time
required to transmit it, the order in which the transmissions reach the various target objects, and the path for reaching the
target objects are undefined.

[2] When a transmission arrives at a target object, it may invoke behavior in the target object. The effect of receiving an
object is specified in Chapter 13, “Common Behaviors.” Such effects include executing activities and firing state machine
transitions.

[3] A send object action receives no reply from the invoked behavior; any attempted reply is simply ignored, and no
transmission is performed to the requestor.

Notation

No specific notation

Presentation Options

If the activity in which a send object action is used will always send a signal, then the SendSignalAction notation can be
used.

Rationale

Sends any object to a specified target object.

Changes from previous UML

SendObjectAction is new in UML 2.0.
11.3.44 SendSignalAction (from BasicActions)

Generalizations

« “InvocationAction (from BasicActions)” on page 249

UML Superstructure Specification, v2.0 273

Description

SendSignal Action is an action that creates a signal instance from its inputs, and transmits it to the target object, where it
may cause the firing of a state machine transition or the execution of an activity. The argument values are available to the
execution of associated behaviors. The requestor continues execution immediately. Any reply message is ignored and is
not transmitted to the requestor. If the input is already a signal instance, use SendObjectAction.

Attributes

No additional attributes

Associations
e signal: Signal [1] The type of signal transmitted to the target object.
e target: InputPin [1] The target object to which the signal is sent.

Constraints
[1] The number and order of argument pins must be the same as the number and order of attributes in the signal.
[2] The type, ordering, and multiplicity of an argument pin must be the same as the corresponding attribute of the signal.

Semantics

[1] When all the prerequisites of the action execution are satisfied, a signal instance of the type specified by signal is
generated from the argument values and his signal instance is transmitted to the identified target object. The target object
may be local or remote. The signal instance may be copied during transmission, so identity might not be preserved. The
manner of transmitting the signal object, the amount of time required to transmit it, the order in which the transmissions
reach the various target objects, and the path for reaching the target objects are undefined.

[2] When a transmission arrives at a target object, it may invoke behavior in the target object. The effect of receiving a signal
object is specified in Chapter 13, “Common Behaviors.” Such effects include executing activities and firing state machine
transitions.

[3] A send signal action receives no reply from the invoked behavior; any attempted reply is simply ignored, and no
transmission is performed to the requestor.

Notation

A send signal action is notated with a convex pentagon.

Signal
Type

Send signal action

Figure 11.22 - Send signal notation

Examples

See extension in “SendSignal Action (as specialized)” on page 394.

274 UML Superstructure Specification, v2.0

Rationale

Sends a signal to a specified target object.

Changes from previous UML

Same as UML 1.5.
11.3.45 StartClassifierBehaviorAction (from CompleteActions)

Generalizations

« “Action (from BasicActions)” on page 230

Description

StartClassifierBehaviorAction is an action that starts the classifier behavior of the input.

Attributes

No additional attributes

Associations

e object: InputPin [1..1] Holds the object on which to start the owned behavior. (Specializes Action.input.)

Constraints
[1] The multiplicity of the input pinis 1..1.
[2] If the input pin has a type, then the type must have a classifier behavior.

Semantics

When a StartClassifierBehaviorAction is invoked, it initiates the classifier behavior of the classifier of the input object. If
the behavior has already been initiated, or the object has no classifier behavior, this action has no effect.

Notation

No specific notation

Rationale

This action is provided to permit the explicit initiation of classifier behaviors, such as state machines and code, in a
detailed, low-level “raw” specification of behavior.

Changes from previous UML

StartClassifierBehaviorAction is a generalization of the UML 1.5 StartStateMachineAction.
11.3.46 StructuralFeatureAction (from IntermediateActions)

(IntermediateActions) StructuralFeatureAction is an abstract class for all structural feature actions.

UML Superstructure Specification, v2.0 275

Generalizations

« “Action (from BasicActions)” on page 230

Description
This abstract action class statically specifies the structural feature being accessed.

The object to access is specified dynamically, by referring to an input pin on which the object will be placed at runtime.
The type of the value of this pin is the classifier that owns the specified structural feature, and the value’s multiplicity is
1.1.

Attributes

No additional attributes

Associations
« structuralFeature : StructuralFeature [1..1] Structural feature to be read.

e object : InputPin [1..1] (Specialized from Action:input) Gives the input pin from which the object whose structural
feature is to be read or written is obtained.

Constraints

[1] The structural feature must not be static.
self.structuralFeature.isStatic = #false

[2] The type of the object input pin is the same as the classifier of the object passed on this pin.

[3] The multiplicity of the input pin must be 1..1.
self.object.multiplicity.is(1,1)
[4] Visibility of structural feature must allow access to the object performing the action.
let host : Classifier = self.context in
self.structuralFeature.visibility = #public
or host = self.structuralFeature.featuringClassifier.type
or (self.structuralFeature.visibility = #protected and host.allSupertypes
->includes(self.structuralFeature.featuringClassifier.type)))
[5] A structural feature has exactly one featuringClassifier.
self.structuralFeature.featuringClassifier->size() = 1

Semantics

A structural feature action operates on a statically specified structural feature of some classifier. The action requires an
object on which to act, provided at runtime through an input pin. If the structural feature is an association end, then
actions on the feature have the same semantics as actions on the links that have the feature as an end. See specializations
of StructuralFeatureAction. The semantics is undefined for accessing a structural feature that violates its visibility. The
semantics for static features are undefined.

276 UML Superstructure Specification, v2.0

The structural features of an object may change over time due to dynamic classification. However, the structural feature
specified in a structural feature action is inherited from a single classifier, and it is assumed that the object passed to a
structural feature action is classified by that classifier directly or indirectly. The structural feature is referred to as a user
model element, so it is uniquely identified, even if there are other structural features of the same name on other
classifiers.

Notation

No specific notation

Rationale

StructuralFeatureAction is introduced for the abstract aspects of structural feature actions.

Changes from previous UML

StructuralFeatureAction is new in UML 2.0. It generalizes AttributeAction in UML 1.5.
11.3.47 TestldentityAction (from IntermediateActions)

TestldentifyAction is an action that tests if two values are identical objects.

Generalizations

« “Action (from BasicActions)” on page 230

Description

This action returns true if the two input values are the same identity, false if they are not.

Attributes

No additional attributes

Associations
e first: InputPin [1..1] (Specialized from Action:input) Gives the pin on which an object is placed.
e result: OutputPin [1..1] — (Specialized from Action:output) Tells whether the two input objects are identical.

e second: InputPin [1..1] — (Specialized from Action:input) Gives the pin on which an object is placed.

Constraints

[1] The input pins have no type.
self first.type->size() = 0
and self.second.type->size() = 0
[2] The multiplicity of the input pinsis 1..1.
self.first. multiplicity.is(1,1)
and self.second.multiplicity.is(1,1)

[3] The type of the result is Boolean.
self.result.type.oclisTypeOf(Boolean)

UML Superstructure Specification, v2.0 277

Semantics

When all the prerequisites of the action have been satisfied, the input values are obtained from the input pins and made
available to the computation. If the two input values represent the same object (regardless of any implementation-level

encoding), the value true is placed on the output pin of the action execution, otherwise the value false is placed on the

output pin. The execution of the action is complete.

Notation

No specific notation

Rationale

TestldentityAction is introduced to tell when two values refer to the same object.

Changes from previous UML

TestldentityAction is unchanged from UML 1.5.
11.3.48 UnmarshallAction (from CompleteActions)

UnmarshallAction is an action that breaks an object of a known type into outputs each of which is equal to a value from
a structural feature of the object.

Generalizations

» “AcceptEventAction (from CompleteActions)” on page 228.

Description

The outputs of this action correspond to the structural features of the specified type. The input must be of this type.

Attributes

No additional attributes

Associations
e object: InputPin [1..1] The object to be unmarshalled.
o unmarshallType : Classifier [1..1] The type of the object to be unmarshalled.

e result: OutputPin [1..*] The values of the structural features of the input object.

Constraints

[1] The type of the object input pin must be the same as the unmarshall classifier.

[2] The multiplicity of the object input pin is 1..1.

[3] The number of result output pins must be the same as the number of structural features of the unmarshall classifier.

[4] The type and ordering of each result output pin must be the same as the corresponding structural features of the
unmarshall classifier.

[5] The multiplicity of each result output pin must be compatible with the multiplicity of the corresponding structural features
of the unmarshall classifier.

278 UML Superstructure Specification, v2.0

[6] The unmarshall classifier must have at least one structural feature.

Semantics

When an object is available on the input pin, the values of the structural features of the specified classifier are retrieved
from the object and placed on the output pins, in the order of the structural features of the specified classifier.

Notation

No specific notation

Examples

See “UnmarshallAction (as specialized)” on page 398.

Rationale

UnmarshallAction is introduced to read all the structural features of an object at once.

Changes from previous UML

UnmarshallAction is the same as UML 1.5, except that the name of the metaassociation to the input pin is changed.
11.3.49 ValuePin (from BasicActions)

Generalizations

» “InputPin (from BasicActions)” on page 249

Description

A value pin is an input pin that provides a value by evaluating a value specification.

Attributes

No additional attributes

Associations

e value : ValueSpecification [1..1] Value that the pin will provide.

Constraints

[1] The type of value specification must be compatible with the type of the value pin.

Semantics

The value of the pin is the result of evaluating the value specification.

Notation

No specific notation. See extensions in Activities.

UML Superstructure Specification, v2.0 279

Rationale

ValuePin is introduced to provide the most basic way of providing inputs to actions.

Changes from previous UML

ValuePin is new to UML 2.
11.3.50 ValueSpecificationAction (from IntermediateActions)
ValueSpecificationAction is an action that evaluates a value specification.

Generalizations

« “Action (from BasicActions)” on page 230

Description

The action returns the result of evaluating a value specification.

Attributes

No additional attributes

Associations

« value : ValueSpecification [1] Value specification to be evaluated. {Specializes Action::output}

Constraints
[1] The type of value specification must be compatible with the type of the result pin.
[2] The multiplicity of the result pinis 1..1.

Semantics

The value specification is evaluated when the action is enabled.

Notation

See “ValueSpecificationAction (as specialized)” on page 399.

Examples

See “ValueSpecificationAction (as specialized)” on page 399.

Rationale

ValueSpecificationAction is introduced for injecting constants and other value specifications into behavior.

Changes from previous UML

ValueSpecificationAction replaces LiteralValueAction from UML 1.5.

280 UML Superstructure Specification, v2.0

11.3.51 VariableAction (from StructuredActions)

Generalizations

« “Action (from BasicActions)” on page 230

Description

VariableAction is an abstract class for actions that operate on a statically specified variable.

Attributes

No additional attributes

Associations

e variable : Variable [1..1] Variable to be read.

Constraints

[1] The action must be in the scope of the variable.
self.variable.isAccessibleBy(self)

Semantics

Variable action is an abstract metaclass. For semantics see its concrete subtypes.

Notation

No specific notation

Rationale

VariableAction is introduced for the abstract aspects of variable actions.

Changes from previous UML

VariableAction is unchanged from UML 1.5.
11.3.52 WriteLinkAction (from IntermediateActions)
WriteLinkAction is an abstract class for link actions that create and destroy links.

Generalizations

» “LinkAction (from IntermediateActions)” on page 250

Description

A write link action takes a complete identification of a link and creates or destroys it.

Attributes

No additional attributes

UML Superstructure Specification, v2.0 281

Associations

No additional associations

Constraints

[1] All end data must have exactly one input object pin.
self.endData.forall(value->size() = 1)

Semantics

See children of WriteLinkAction.

Notation

No specific notation

Rationale

WriteLinkAction is introduced to navigate across links.

Changes from previous UML

WriteLinkAction is unchanged from UML 1.5.
11.3.53 WriteStructuralFeatureAction (from IntermediateActions)

WriteStructuralFeatureAction is an abstract class for structural feature actions that change structural feature values.

Generalizations

» “StructuralFeatureAction (from IntermediateActions)” on page 275

Description

A write structural feature action operates on a structural feature of an object to modify its values. It has an input pin on
which the value that will be added or removed is put. Other aspects of write structural feature actions are inherited from
StructuralFeatureAction.

Attributes

No additional attributes

Associations

e value : InputPin [1..1] (Specialized from Action:input) Value to be added or removed from the structural feature.

Constraints

[1] The type input pin is the same as the classifier of the structural feature.
self.value.type = self.structuralFeature.featuringClassifier

[2] The multiplicity of the input pin is 1..1.
self.value.multiplicity.is(1,1)

282 UML Superstructure Specification, v2.0

Semantics

None.

Notation

No specific notation

Rationale

WriteStructuralFeatureAction is introduced to abstract aspects of structural feature actions that change structural feature
values.

Changes from previous UML

WriteStructuralFeatureAction is new in UML 2.0. It generalizes WriteAttributeAction in UML 1.5.
11.3.54 WriteVariableAction (from StructuredActions)

WriteVariableAction is an abstract class for variable actions that change variable values.

Generalizations

« “VariableAction (from StructuredActions)” on page 281

Description

A write variable action operates on a variable to modify its values. It has an input pin on which the value that will be
added or removed is put. Other aspects of write variable actions are inherited from VariableAction.

Attributes

No additional attributes

Associations

e value : InputPin [1..1] (Specialized from Action:input) Value to be added or removed from the variable.

Constraints

[1] The type input pin is the same as the type of the variable.
self.value.type = self.variable.type

[2] The multiplicity of the input pinis 1..1.
self.value.multiplicity.is(1,1)

Semantics

See children of WriteVariableAction.

Notation

No specific notation

UML Superstructure Specification, v2.0 283

Rationale

WriteVariableAction is introduced to abstract aspects of structural feature actions that change variable values.

Changes from previous UML

WriteVariableAction is unchanged from UML 1.5.

11.4 Diagrams

See “Diagrams” on page 402.

284 UML Superstructure Specification, v2.0

12 Activities

12.1 Overview

Activity modeling emphasizes the sequence and conditions for coordinating lower-level behaviors, rather than which
classifiers own those behaviors. These are commonly called control flow and object flow models. The actions coordinated
by activity models can be initiated because other actions finish executing, because objects and data become available, or
because events occur external to the flow.

Actions and activities

An action execution corresponds to the execution of a particular action. Similarly, an activity execution is the execution
of an activity, ultimately including the executions of actions within it. Each action in an activity may execute zero, one,
or more times for each activity execution. At the minimum, actions need access to data, they need to transform and test
data, and actions may require sequencing. The activities specification (at the higher compliance levels) allows for several
(logical) threads of control executing at once and synchronization mechanisms to ensure that activities execute in a
specified order. Semantics based on concurrent execution can then be mapped easily into a distributed implementation.
However, the fact that the UML allows for concurrently executing objects does not necessarily imply a distributed
software structure. Some implementations may group together objects into a single task and execute sequentially—so
long as the behavior of the implementation conforms to the sequencing constraints of the specification.

There are potentially many ways of implementing the same specification, and any implementation that preserves the
information content and behavior of the specification is acceptable. Because the implementation can have a different
structure from that of the specification, there is a mapping between the specification and its implementation. This
mapping need not be one-to-one: an implementation need not even use object-orientation, or it might choose a different
set of classes from the original specification.

The mapping may be carried out by hand by overlaying physical models of computers and tasks for implementation
purposes, or the mapping could be carried out automatically. This specification neither provides the overlays, nor does it
provide for code generation explicitly, but the specification makes both approaches possible.

See the “Activity (from BasicActivities, CompleteActivities, Fundamental Activities, StructuredActivities)” and “Action
(from CompleteActivities, Fundamental Activities, StructuredActivities)” metaclasses for more introduction and semantic
framework.

FundamentalActivities

The fundamental level defines activities as containing nodes, which includes actions. This level is shared between the
flow and structured forms of activities.

BasicActivities

This level includes control sequencing and data flow between actions, but explicit forks and joins of control, as well as
decisions and merges, are not supported. The basic and structured levels are orthogonal. Either can be used without the
other or both can be used to support modeling that includes both flows and structured control constructs.

IntermediateActivities

The intermediate level supports modeling of activity diagrams that include concurrent control and data flow, and
decisions. It supports modeling similar to traditional Petri nets with queuing. It requires the basic level.

UML Superstructure Specification, v2.0 285

The intermediate and structured levels are orthogonal. Either can be used without the other or both can be used to support
modeling that includes both concurrency and structured control constructs.

CompleteActivities

The complete level adds constructs that enhance the lower level models, such as edge weights and streaming.

StructuredActivities

The structured level supports modeling of traditional structured programming constructs, such as sequences, loops, and
conditionals, as an addition to fundamental activity nodes. It requires the basic level. It is compatible with the
intermediate and complete levels.

CompleteStructuredActivities

This level adds support for data flow output pins of sequences, conditionals, and loops. It depends on the basic layer for
flows.

ExtraStructuredActivities

The extra structure level supports exception handling as found in traditional programming languages and invocation of
behaviors on sets of values. It requires the structured level.

286 UML Superstructure Specification, v2.0

12.2 Abstract Syntax

Figure 12.1 shows the dependencies of the activity packages.

BasicBehaviors Kemel BasicActions
<<merge>> ‘ <<import>> 4\
FundamentalActivities <<merge>> ‘
<<merge>> S\ <<merge>>

|

BasicActivitie s

|
|
StructuredActivities |
ST
<<im po/rt>>/ /
I
4\ 4\<<merge>> / /

<<merge>> IntermediateActivities BehaviorStateMachines

‘ ExtraStructuredActivities
<<m el’@//e>> /k
| - I

CompleteActivities

‘ <<merge>>

<<merge>>

/ <<import>>

CompleteStructuredActivities

Figure 12.1 - Dependencies of the Activity packages

UML Superstructure Specification, v2.0 287

Package FundamentalActivities

Behavior
(fromBasicBehaviors)

+activity
{subsets owner}

Activity

gt

NamedElement
(fromKernel)

0.1

+node

{subsets ownedEle me nt}

ActivityNode

Activity

Action
Figure 12.2 - Fundamental nodes
Element +activity
(fromKerrel) ’
0.1
{subsets owner}
+/sub group +group,
{union. {subsets ownedElement}
subsets ownedElement} ActivityGroup .

+containedNode

ActivityNode

0.1 +/superGroup

+/inGroup

{union}

{union, subsets owner}

Figure 12.3 - Fundamental groups

288

UML Superstructure Specification, v2.0

Package BasicActivities

Redefinabl eEleme nt
(fromKernel)

ActivityNode

+redefinedElement

{redefines redefinedElement}

TypedElement

(fromK errel)

7

ObjectNode

Parameter

(from Kernel)

+param eter 1

Pin

ActivityParameterNode

Figure 12.4 - Nodes (BasicActivities)

UML Superstructure Specification, v2.0

ControlNode

£

ActivityFinalNode InitialNode

289

RedefinableElement

(fromKernel)
+edge 0.1
)] ActivityEdge {subsets ownedElement} " -
ActivityNode 1 +incoming N +activity‘ Activity
+target * {subsets owner}
1 +outgoing
+source *
*
+redefinedElement
{redefinesredefinedElement}
ControlFlow ObjectFlow
Figure 12.5 - Flows
— * +containedEdge
ActivityGroup ActivityEdge
+/inGroup *
{union}
Figure 12.6 - Groups
Activity

isReadOnly : Boolean = false

Figure 12.7 - Elements

290 UML Superstructure Specification, v2.0

Package IntermediateActivities

ObjectNode

(fromBasicActivities)

CentralBufferNode

Figure 12.8 - Object nodes (IntermediateActivities)

ControlNode
(fromBasicAdivities)

FinalNode

ForkNode

JoinNode

MergeNode

DecisionNode

T

ActivityFinalNode

FlowFinalNode

Figure 12.9 - Control nodes (IntermediateActivities)

UML Superstructure Specification, v2.0

+decisioninput 0.

Behavior
(fromBasicBehaviors)

291

ActivityGroup NamedElement
(fromBasicActivities) (fromKernel)

+subgroup

{redefines subgroup}
*

0.1

ActivityParttition +represents
+superPartition !lemenswn : Boolean = false . 01 Ele ment
isExternal : Boolean = false - (fromKernel)
{subsets superGroup}
* *
+inPartition +inPartition
{subsetsinGroup} {subsets inGroup}

ActivityEdge . ActivityNode
+containedEdge +containedNode
{redefines containedEdge} (redefines containedNode}
+guard
1 |, {subsetsownedElement

ValueSpecification
(fromKernel)

{default value istrue}

Figure 12.10 - Partitions

+guard
ActivityE dge {subsets ownedElement} ValueSpecification
= (from Kernel)
1

{default value is true}

Figure 12.11 - Flows (IntermediateActivities)

292 UML Superstructure Specification, v2.0

Package CompleteActivities

Activity
isSingleExecution : Boolean

Figure 12.12 - Elements (CompleteActivities)

+local Precondition
{subsets ownedElement}

Action

*

Constraint
(from Kernel)

*

+lo cal Postcondi tion
{subsets owne dElement}

Figure 12.13 - Constraints (CompleteActivities)

0.1

ObjectFlow

+transformation

isMulticast : Boolean = false
isMultireceive : Boolean = false

* 0.1

ActivityEdge

>

+selection

+weight

Behavior
(fromBasicBehavi ors)

{subsets ownedElement}

ValueSpecification

Figure 12.14 - Flows (CompleteActivities)

UML Superstructure Specification, v2.0

(fromKernel)

1
{defaultvalueis1}

293

{ default value isunlimited }

ObjectNode 0..1 1 AP
orderng : ObjectNodeOrderingKind = FIFO @ ValueSpecification
H . - (fromKernel)
isControlType : Boolean = false +upperBound

* * {subsets ownedElement}

+inState * +selection
0.1 <<enumeration>>
State Behavior ObjectNodeOrderingKind
(from BehaviorStateM achines) (fromBasicBehaviors) unordered
ordered
LIFO
FIFO

Figure 12.15 - Object nodes (CompleteActivities)

Pin
isControl : Boolean = false

Figure 12.16 - Control pins

CentralBufferNode
(from IntermediateActivities)

DataStoreNode

Figure 12.17 - Data stores

294 UML Superstructure Specification, v2.0

Parameter

isStrea

isSException : Boolean = false

m : Boolean =fals

effect : Param eterEffectKind

NamedElement

Be havior

BehavioralFeature

<<enumeration>>
ParameterEffectKind

create
read

delete

update

Figure 12.18 Parameter sets

(fromKernel)
+parameter +p arameterSet ParameterSet
1.* *

+ownedParameterSet
{subsetsowned Member}
+ownedParameterSet
{subsets ownedmember} =*
+condition

{subsets ownedElement}

Constraint
(from Kernel)

JoinNode

isCombineDuplicate : Boolean =tmue

1
ValueSpecification
< f P g
+joinSpec (fromkemé)
{subsets owned Ele me nt} {default value is"and"}

Figure 12.19 - Control nodes (CompleteActivities)

UML Superstructure Specification, v2.0

295

ActivityGroup
(fromBasicActivities)

InterruptibleActivityRegion

+interrupts| 0..1 x [+ininterruptibleRegion

+interuptingEdge | *

{subsetsinGroup}

ActivityNode

ActivityEdge

{redefines contai ned Node}

Figure 12.20 - Interruptible regions

296

+containedNode

UML Superstructure Specification, v2.0

Package StructuredActivities

TypedElement MultiplicityEl ement Namespace ActivityNode
(fromKernel) (fromKernel) (fromKernel)
Executable Node +containedNode -
ActivityGroup fredefines containedNode}
(fromFund arentalAdivities) /
Variab] +variable Action
ariable
{subsets ownedMember}
.1
* StructuredActivityNode 0.1
+variable | * .
fsubsets owne dMember} +scope L 2
{subsets owner} +inStructuredNode
+activityScope +activity B {subsets inGroup}
{subsets owner} 0.1 {redef!nes activity,
redefines activity} * ExecutableNode
Activity @
0.1 +/stiu cture dNode
{subsets node, +executableNode .
subsets group} {ordered,
redefines containedNode}
ConditionalNode
isDeterminate : Boolean :Elemen:‘ 0.1
isAssured : Boolean (fromKeme)
1 SequenceNode
+dause
{subsets ownedElement} | 1.*
0.1 0.1 g 0.1
Clause LoopNode
+predecd sorClause isTestedFirst : Boolean
0.1 0.1
+successorClause
* 0..1 0.1
) +setupPart +bodyPart
+decider | 1 1| yqecider . .
+body * +test *
ActivityNode OutputPin ActivityNode
- *
(fromFundanental Activities) (from BasicActions) (fromFundanental Activities)
+test

Figure 12.21 - Structured nodes

UML Superstructure Specification, v2.0

297

Package CompleteStructuredActivities

Action InputPin
(fromBasicActions) (from Basic Acti ons)

* +loopVariablelnput
{ordered,

subsetsinput}

0.1
” >
StructuredActivityNode ConditionalNode LoopNode Clause
muglsolate : Boolean u
’ fsubsets inGroup} 0.1 0.1 0.1 *
0.1 +inStructuredNode
{g:;(;::’ +loopVariable
{ordered, output} {ordered,
subsets output} subsets
*\[,ownedElement} * *bodyOutput
+containedEdge tresult * *result *
* | {edefinescontained Edge} OutputPin Outp.utPiAn *
. (from BasicActions) (fromEasicAdians)
ActivityEdge +bodyOutput
Figure 12.22 - Structured nodes (CompleteStructuredActivities)
Package ExtraStructuredActivities
Element
(fromKernel)
1 +handler Z} .
ExecutableNode {subsets owned Ele me nt} +exceptioninput ObjectNode

ExceptionHandler
+protectedNode * 1

{subsets owner}

(fromBasicActivities)

+exceptionType

Classifier
(fromKernel)

+handleBody

Figure 12.23 - Exceptions

298 UML Superstructure Specification, v2.0

StructuredActivi Fyﬁbde ObjectNode <<enumeration>>
(from Sructuredictivities) (fromBasic Acivities) ExpansionKind
parallel
iterative
; stream
+inputElement
+regionAslnput 1.*
0.1
ExpansionRegion ExpandonNode
mode : ExpansionKind
0.*

0.1

+regionAsOutput +outputElement

Figure 12.24 - Expansion regions

12.3 Class Descriptions

12.3.1 AcceptEventAction (as specialized)
See “AcceptEventAction (from CompleteActions)” on page 228.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

If an AcceptEventAction has no incoming edges, then the action starts when the containing activity or structured node
does, whichever most immediately contains the action. In addition, an AcceptEventAction with no incoming edges
remains enabled after it accepts an event. It does not terminate after accepting an event and outputting a value, but
continues to wait for other events. This semantic is an exception to the normal execution rules in Activities. An
AcceptEventAction with no incoming edges and contained by a structured node is terminated when its container is
terminated.

Notation

See “AcceptEventAction (from CompleteActions)” on page 228.

UML Superstructure Specification, v2.0 299

Examples

Figure 12.25 is an example of the acceptance of a signal indicating the cancellation of an order. The acceptance of the
signal causes an invocation of a cancellation behavior. This action is enabled on entry to the activity containing it,
therefore no input arrow is shown.

gradrge' 4 Cancel
request Order

Figure 12.25 - Accept signal, top level in scope.

In Figure 12.26, a request payment signal is sent after an order is processed. The activity then waits to receive a payment
confirmed signal. Acceptance of the payment confirmed signal is enabled only after the request for payment is sent; no
confirmation is accepted until then. When the confirmation is received, the order is shipped.

Process Ship
Order Order

Figure 12.26 - Accept signal, explicit enable

In Figure 12.27, the end-of-month accept time event action generates an output at the end of the month. Since there are no
incoming edges to the time event action, it is enabled as long as its containing activity or structured node is. It will generate an
output at the end of every month.

Request
Payment

End of
month
occurred

Figure 12.27 - Repetitive time event

Rationale

See “AcceptEventAction (from CompleteActions)” on page 228.

Changes from previous UML

See “AcceptEventAction (from CompleteActions)” on page 228.

300 UML Superstructure Specification, v2.0

12.3.2 Action (from CompleteActivities, FundamentalActivities, StructuredActivities)

Generalizations

» “ActivityNode (from BasicActivities, CompleteActivities, Fundamental Activities, IntermediateActivities,
StructuredActivities)” on page 323.

« “ExecutableNode (from ExtraStructuredActivities, StructuredActivities)” on page 354.

« “Action (from BasicActions)” on page 230 (merge increment).

Description

An action may have sets of incoming and outgoing activity edges that specify control flow and data flow from and to
other nodes. An action will not begin execution until all of its input conditions are satisfied. The completion of the
execution of an action may enable the execution of a set of successor nodes and actions that take their inputs from the
outputs of the action.

Package CompleteActivities

In CompleteActivities, action is extended to have pre- and postconditions.

Attributes

No additional attributes

Associations

Package CompleteActivities
« localPrecondition : Constraint [0..*] Constraint that must be satisfied when execution is started.

¢ localPostcondition : Constraint [0..*] Constraint that must be satisfied when execution is completed.

Constraints

No additional constraints

Operations

[1] activity operates on Action. It returns the activity containing the action.
activity() : Activity;
activity = if self. Activity->size() > 0 then self.Activity else self.group.activity() endif

Semantics

The sequencing of actions are controlled by control edges and object flow edges within activities, which carry control and
object tokens respectively (see Activity). Alternatively, the sequencing of actions is controlled by structured nodes, or by
a combination of structured nodes and edges. Except where noted, an action can only begin execution when all incoming
control edges have tokens, and all input pins have object tokens. The action begins execution by taking tokens from its
incoming control edges and input pins. When the execution of an action is complete, it offers tokens in its outgoing
control edges and output pins, where they are accessible to other actions.

The steps of executing an action with control and data flow are as follows:

UML Superstructure Specification, v2.0 301

[1] An action execution is created when all its object flow and control flow prerequisites have been satisfied (implicit join).
Exceptions to this are listed below. The flow prerequisite is satisfied when all of the input pins are offered tokens and
accept them all at once, precluding them from being consumed by any other actions. This ensures that multiple action
executions competing for tokens do not accept only some of the tokens they need to begin, causing deadlock as each
execution waits for tokens that are already taken by others.

[2] An action execution consumes the input control and object tokens and removes them from the sources of control edges
and from input pins. The action execution is now enabled and may begin execution. If multiple control tokens are
available on a single edge, they are all consumed.

[3] An action continues executing until it has completed. Most actions operate only on their inputs. Some give access to a
wider context, such as variables in the containing structured activity node, or the self object, which is the object owning
the activity containing the executing action. The detailed semantic of execution an action and definition of completion
depends on the particular subclass of action.

[4] When completed, an action execution offers object tokens on all its output pins and control tokens on all its outgoing
control edges (implicit fork), and it terminates. Exceptions to this are listed below. The output tokens are now available to
satisfy the control or object flow prerequisites for other action executions.

[5] After an action execution has terminated, its resources may be reclaimed by an implementation, but the details of resource
management are not part of this specification and are properly part of an implementation profile.

See ValuePin and Parameter for exceptions to rule for starting action execution.

If a behavior is not reentrant, then no more than one execution of it will exist at any given time. An invocation of a non-
reentrant behavior does not start the behavior when the behavior is already executing. In this case, tokens control tokens
are discarded, and data tokens collect at the input pins of the invocation action, if their upper bound is greater than one,
or upstream otherwise. An invocation of a reentrant behavior will start a new execution of the behavior with newly
arrived tokens, even if the behavior is already executing from tokens arriving at the invocation earlier.

Package ExtraStructuredActivities

If an exception occurs during the execution of an action, the execution of the action is abandoned and no regular output
is generated by this action. If the action has an exception handler, it receives the exception object as a token. If the action
has no exception handler, the exception propagates to the enclosing node and so on until it is caught by one of them. If an
exception propagates out of a nested node (action, structured activity node, or activity), all tokens in the nested node are
terminated. The data describing an exception is represented as an object of any class.

Package CompleteActivities

Streaming allows an action execution to take inputs and provide outputs while it is executing. During one execution, the
action may consume multiple tokens on each streaming input and produce multiple tokens on each streaming output. See
Parameter.

Local preconditions and postconditions are constraints that should hold when the execution starts and completes,
respectively. They hold only at the point in the flow that they are specified, not globally for other invocations of the
behavior at other places in the flow or on other diagrams. Compare to pre and postconditions on Behavior (in Activities).
See semantic variations below for their effect on flow.

302 UML Superstructure Specification, v2.0

Semantic Variation Points
Package CompleteActivities

How local pre- and postconditions are enforced is determined by the implementation. For example, violations may be
detected at compile time or runtime. The effect may be an error that stops the execution or just a warning, and so on.
Since local pre and postconditions are modeler-defined constraints, violations do not mean that the semantics of the
invocation is undefined as far as UML goes. They only mean the model or execution trace does not conform to the
modeler’s intention (although in most cases this indicates a serious modeling error that calls into question the validity of
the model).

See variations in ActivityEdge and ObjectNode.

Notation
Use of action and activity notation is optional. A textual notation may be used instead.

Actions are notated as round-cornered rectangles. The name of the action or other description of it may appear in the
symbol. See children of action for refinements.

name

Figure 12.28 - Action

Package CompleteActivities

Local pre- and postconditions are shown as notes attached to the invocation with the keywords «localPrecondition» and
«localPostcondition», respectively.

«localPrecondition»
constraint

«localPostcondition»
constraint

Figure 12.29 - Local pre- and postconditions

UML Superstructure Specification, v2.0 303

Examples

Examples of actions are illustrated below. These perform behaviors called Send Payment and Accept Payment.

Send
Payment

Figure 12.30 - Examples of actions

Below is an example of an action expressed in an application-dependent action language:

FOR every Employee
calculate salary

print check
ENDFOR

Figure 12.31 - Example of action with tool-dependent action language

Package CompleteActivities

The example below illustrates local pre- and postconditions for the action of a drink-dispensing machine. This is
considered “local” because a drink-dispensing machine is constrained to operate under these conditions for this particular
action. For a machine technician scenario, the situation would be different. Here, a machine technician would have a key
to open up the machine, and therefore no money need be inserted to dispense the drink, nor change need be given. In such
a situation, the global pre- and postconditions would be all that is required. (Global conditions are described in Activity
specification, in the next subsection.) For example, a global precondition for a Dispense Drink activity could be “A drink
is selected that the vending machine dispenses.” The postcondition, then, would be “The vending machine dispensed the
drink that was selected.” In other words, there is no global requirement for money and correct change.

«localPrecondition»

A drink is selected that

the vending machine contains and
the correct payment is made.

Dispense
Drink

«localPostcondition»

The vending machine dispensed
the drink that is selected and
correct change is provided.

Figure 12.32 - Example of an action with local pre/postconditions

304 UML Superstructure Specification, v2.0

Rationale

An action represents a single step within an activity, that is, one that is not further decomposed within the activity. An
activity represents a behavior that is composed of individual elements that are actions. Note, however, that a call behavior
action may reference an activity definition, in which case the execution of the call action involves the execution of the
referenced activity and its actions. Similarly for all the invocation actions. An action is therefore simple from the point of
view of the activity containing it, but may be complex in its effect and not be atomic. As a piece of structure within an
activity model, it is a single discrete element; as a specification of behavior to be performed, it may invoke referenced
behavior that is arbitrarily complex. As a consequence, an activity defines a behavior that can be reused in many places,
whereas an instance of an action is only used once at a particular point in an activity.

Changes from previous UML

Explicitly modeled actions as part of activities are new in UML 2.0, and replace ActionState, CallState, and
SubactivityState in UML 1.5. They represent a merger of activity graphs from UML 1.5 and actions from UML 1.5.

Local pre and postconditions are new to UML 2.0.
12.3.3 ActionIlnputPin (as specialized)
See “ActionlnputPin (from StructuredActions)” on page 231.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

See “ActionlnputPin (from StructuredActions)” on page 231.

Notation

An action input pin with a ReadVariableAction as a fromAction is notated as an input pin with the variable name written
beside it. An action input pin with a ReadSelfObject as a fromAction is notated as an input pin with the word “self”
written beside it. An action input pin with a ValueSpecification as a fromAction is notated as an input pin with the value
specification written beside it.

Examples

See “ActionlnputPin (from StructuredActions)” on page 231.

UML Superstructure Specification, v2.0 305

12.3.4 Activity (from BasicActivities, CompleteActivities, FundamentalActivities,
StructuredActivities)

An activity is the specification of parameterized behavior as the coordinated sequencing of subordinate units whose
individual elements are actions. There are actions that invoke activities (directly by “CallBehaviorAction (from
BasicActions)” on page 237 or indirectly as methods by “CallOperationAction (from BasicActions)” on page 239).

Generalizations

« “Behavior (from BasicBehaviors)” on page 416

Description

An activity specifies the coordination of executions of subordinate behaviors, using a control and data flow model. The
subordinate behaviors coordinated by these models may be initiated because other behaviors in the model finish
executing, because objects and data become available, or because events occur external to the flow. The flow of execution
is modeled as activity nodes connected by activity edges. A node can be the execution of a subordinate behavior, such as
an arithmetic computation, a call to an operation, or manipulation of object contents. Activity nodes also include flow-of-
control constructs, such as synchronization, decision, and concurrency control. Activities may form invocation hierarchies
invoking other activities, ultimately resolving to individual actions. In an object-oriented model, activities are usually
invoked indirectly as methods bound to operations that are directly invoked.

Activities may describe procedural computation. In this context, they are the methods corresponding to operations on
classes. Activities may be applied to organizational modeling for business process engineering and workflow. In this
context, events often originate from inside the system, such as the finishing of a task, but also from outside the system,
such as a customer call. Activities can also be used for information system modeling to specify system level processes.

Activities may contain actions of various kinds:
« Occurrences of primitive functions, such as arithmetic functions.
- Invocations of behavior, such as activities.
- Communication actions, such as sending of signals.
« Manipulations of objects, such as reading or writing attributes or associations.

Actions have no further decomposition in the activity containing them. However, the execution of a single action may
induce the execution of many other actions. For example, a call action invokes an operation that is implemented by an
activity containing actions that execute before the call action completes.

Most of the constructs in the Activity chapter deal with various mechanisms for sequencing the flow of control and data
among the actions:

 Object flows for sequencing data produced by one node that is used by other nodes.
« Control flows for sequencing the execution of nodes.

« Control nodes to structure control and object flow. These include decisions and merges to model contingency. These
also include initial and final nodes for starting and ending flows. In IntermediateActivities, they include forks and joins
for creating and synchronizing concurrent subexecutions.

« Activity generalization to replace nodes and edges.

» Object nodes to represent objects and data as they flow in and out of invoked behaviors, or to represent collections of

306 UML Superstructure Specification, v2.0

tokens waiting to move downstream.
Package StructuredActivities
» Composite nodes to represent structured flow-of-control constructs, such as loops and conditionals.
Package IntermediateActivities

« Partitions to organize lower-level activities according to various criteria, such as the real-world organization
responsible for their performance.

Package CompleteActivities

« Interruptible regions and exceptions to represent deviations from the normal, mainline flow of control.

Attributes

Package BasicActivities

¢ isReadOnly : Boolean = false If true, this activity must not make any changes to variables outside the activity or to
objects. (This is an assertion, not an executable property. It may be used by an
execution engine to optimize model execution. If the assertion is violated by the
action, then the model is ill formed.) The default is false (an activity may
make non-local changes).

Package CompleteActivities

e isSingleExecution : Boolean = false If true, all invocations of the activity are handled by the same execution.

Associations

Package FundamentalActivities

e group : ActivityGroup [0..*] Top-level groups in the activity.

e node : ActivityNode [0..*] Nodes coordinated by the activity.

Package BasicActivities

e edge : ActivityEdge [0..*] Edges expressing flow between nodes of the activity.
Package IntermediateActivities

e partition : ActivityPartition [0..*] Top-level partitions in the activity.

Package StructuredActivities

e [/structuredNode : StructuredActivityNode [0..*] Top-level structured nodes in the activity. Subsets

e variable : Variable [0..*] Top-level variables in the activity. Subsets Namespace::ownedMember.

Constraints
[1] The nodes of the activity must include one ActivityParameterNode for each parameter.
[2] An activity cannot be autonomous and have a classifier or behavioral feature context at the same time.

UML Superstructure Specification, v2.0 307

Semantics

The semantics of activities is based on token flow. By flow, we mean that the execution of one node affects, and is
affected by, the execution of other nodes, and such dependencies are represented by edges in the activity diagram. A token
contains an object, datum, or locus of control, and is present in the activity diagram at a particular node. Each token is
distinct from any other, even if it contains the same value as another. A node may begin execution when specified
conditions on its input tokens are satisfied; the conditions depend on the kind of node. When a node begins execution,
tokens are accepted from some or all of its input edges and a token is placed on the node. When a node completes
execution, a token is removed from the node and tokens are offered to some or all of its output edges. See later in this
section for more about how tokens are managed.

All restrictions on the relative execution order of two or more actions are explicitly constrained by flow relationships. If
two actions are not directly or indirectly ordered by flow relationships, they may execute concurrently. This does not
require parallel execution; a specific execution engine may choose to perform the executions sequentially or in parallel, as
long as any explicit ordering constraints are satisfied. In most cases, there are some flow relationships that constrain
execution order. Concurrency is supported in IntermediateActivities, but not in BasicActivities.

Activities can be parameterized, which is a capability inherited from Behavior (see 12.3.9, “ActivityParameterNode (from
BasicActivities),” on page 326). Functionality inherited from Behavior also supports the use of activities on classifiers
and as methods for behavioral features. The classifier, if any, is referred to as the context of the activity. At runtime, the
activity has access to the attributes and operations of its context object and any objects linked to the context object,
transitively. An activity that is also a method of a behavioral feature has access to the parameters of the behavioral
feature. In workflow terminology, the scope of information an activity uses is called the process-relevant data.
Implementations that have access to metadata can define parameters that accept entire activities or other parts of the user
model.

An activity with a classifier context, but that is not a method of a behavioral feature, is invoked when the classifier is
instantiated. An activity that is a method of a behavioral feature is invoked when the behavioral feature is invoked. The
Behavior metaclass also provides parameters, which must be compatible with the behavioral feature it is a method of, if
any. Behavior also supports overriding of activities used as inherited methods. See the Behavior metaclass for more
information.

Activities can also be invoked directly by other activities rather than through the call of a behavioral feature that has an
activity as a method. This functional or monomorphic style of invocation is useful at the stage of development where
focus is on the activities to be completed and goals to be achieved. Classifiers responsible for each activity can be
assigned at a later stage by declaring behavioral features on classifiers and assigning activities as methods for these
features. For example, in business reengineering, an activity flow can be optimized independently of which departments
or positions are later assigned to handle each step. This is why activities are autonomous when they are not assigned to a
classifier.

Regardless of whether an activity is invoked through a behavioral feature or directly, inputs to the invoked activity are
supplied by an invocation action in the calling activity, which gets its inputs from incoming edges. Likewise an activity
invoked from another activity produces outputs that are delivered to an invocation action, which passes them onto its
outgoing edges.

An activity execution represents an execution of the activity. An activity execution, as a reflective object, can support
operations for managing execution, such as starting, stopping, aborting, and so on; attributes, such as how long the
process has been executing or how much it costs; and links to objects, such as the performer of the execution, who to
report completion to, or resources being used, and states of execution such as started, suspended, and so on. Used this
way activity is the modeling basis for the WfProcess interface in the OMG Workflow Management Facility,

308 UML Superstructure Specification, v2.0

www.omg.org/cgi-bin/doc?formal/00-05-02. It is expected that profiles will include class libraries with standard classes
that are used as root classes for activities in the user model. Vendors may define their own libraries, or support user-
defined features on activity classes.

Nodes and edges have token flow rules. Nodes control when tokens enter or leave them. Edges have rules about when a
token may be taken from the source node and moved to the target node. A token traverses an edge when it satisfies the
rules for target node, edge, and source node all at once. This means a source node can only offer tokens to the outgoing
edges, rather than force them along the edge, because the tokens may be rejected by the edge or the target node on the
other side. Multiple tokens offered to an edge at once is the same as if they were offered one at a time. Since multiple
edges can leave the same node, token flow semantics is highly distributed and subject to timing issues and race
conditions, as is any distributed system. There is no specification of the order in which rules are applied on the various
nodes and edges in an activity. It is the responsibility of the modeler to ensure that timing issues do not affect system
goals, or that they are eliminated from the model. Execution profiles may tighten the rules to enforce various kinds of
execution semantics. Start at ActivityEdge and ActivityNode to see the token management rules.

Tokens cannot “rest” at control nodes, such as decisions and merges, waiting to move downstream. Control nodes act as
traffic switches managing tokens as they make their way between object nodes and actions, which are the nodes where
tokens can rest for a period of time. Initial nodes are excepted from this rule.

A data token with no value in is called the null token. It can be passed along and used like any other token. For example,
an action can output a null token and a downstream decision point can test for it and branch accordingly. Null tokens
satisfy the type of all object nodes.

The semantics of activities is specified in terms of these token rules, but only for the purpose of describing the expected
runtime behavior. Token semantics is not intended to dictate the way activities are implemented, despite the use of the
term “execution.” They only define the sequence and conditions for behaviors to start and stop. Token rules may be
optimized in particular cases as long as the effect is the same.

Package IntermediateActivities

Activities can have multiple tokens flowing in them at any one time, if required. Special nodes called object nodes
provide and accept objects and data as they flow in and out of invoked behaviors, and may act as buffers, collecting
tokens as they wait to move downstream.

Package CompleteActivities

Each time an activity is invoked, the isSingleExecution attribute indicates whether the same execution of the activity
handles tokens for all invocations, or a separate execution of the activity is created for each invocation. For example, an
activity that models a manufacturing plant might have a parameter for an order to fill. Each time the activity is invoked,
a new order enters the flow. Since there is only one plant, one execution of the activity handles all orders. This applies
even if the behavior is a method, for example, on each order. If a single execution of the activity is used for all
invocations, the modeler must consider the interactions between the multiple streams of tokens moving through the nodes
and edges. Tokens may reach bottlenecks waiting for other tokens ahead of them to move downstream, they may overtake
each other due to variations in the execution time of invoked behaviors, and most importantly, may abort each other with
constructs such as activity final.

If a separate execution of the activity is used for each invocation, tokens from the various invocations do not interact. For
example, an activity that is the behavior of a classifier, is invoked when the classifier is instantiated, and the modeler will
usually want a separate execution of the activity for each instance of the classifier. The same is true for modeling methods
in common programming languages, which have separate stack frames for each method call. A new activity execution for
each invocation reduces token interaction, but might not eliminate it. For example, an activity may have a loop creating
tokens to be handled by the rest of the activity, or an unsynchronized flow that is aborted by an activity final. In these

UML Superstructure Specification, v2.0 309

cases, modelers must consider the same token interaction issues as using a single activity execution for all invocations.
Also see the effect of non-reentrant behaviors described at Except in CompleteActivities, each invocation of an activity is
executed separately; tokens from different invocations do not interact.

Nodes and edges inherited from more general activities can be replaced. See RedefinableElement for more information on
overriding inherited elements.

Package IntermediateActivities

If a single execution of the activity is used for all invocations, the modeler must consider additional interactions between
tokens. Tokens may reach bottlenecks waiting for tokens ahead of them to move downstream, they may overtake each
other due to the ordering algorithm used in object node buffers, or due to variations in the execution time of invoked
behaviors, and most importantly, may abort each other with constructs such as activity final, exception outputs, and
interruptible regions.

Package CompleteActivities

Complete activities add functionality that also increases interaction. For example, streaming outputs create tokens to be
handled by the rest of the activity. In these cases, modelers must consider the same token interaction issues even when
using a separate execution of activity execution for all invocations.

Interruptible activity regions are groups of nodes within which all execution can be terminated if an interruptible activity
edge is traversed leaving the region.

See “ActivityNode (from BasicActivities, CompleteActivities, FundamentalActivities, IntermediateActivities,
StructuredActivities)” and “ActivityEdge (from BasicActivities, CompleteActivities, CompleteStructuredActivities,
IntermediateActivities)” for more information on the way activities function. An activity with no nodes and edges is well-
formed, but unspecified. It may be used as an alternative to a generic behavior in activity modeling. See
“ActivityPartition (from IntermediateActivities)” for more information on grouping mechanisms in activities.

Semantic Variation Points

No specific variations in token management are defined, but extensions may add new types of tokens that have their own
flow rules. For example, a BPEL extension might define a failure token that flows along edges that reject other tokens. Or
an extension for systems engineering might define a new control token that terminates executing actions.

Notation
Use of action and activity notation is optional. A textual notation may be used instead.

The notation for an activity is a combination of the notations of the nodes and edges it contains, plus a border and name
displayed in the upper left corner. Activity parameter nodes are displayed on the border. Actions and flows that are
contained in the activity are also depicted.

Pre- and post condition constraints, inherited from Behavior, are shown as with the keywords «precondition» and
«postcondition», respectively. These apply globally to all uses of the activity. See Figure 12.33 and Behavior in Common
Behavior. Compare to local pre- and postconditions on Action.

310 UML Superstructure Specification, v2.0

(CompleteActivities) The keyword «singleExecution» is used for activities that execute as a single shared execution.
Otherwise, each invocation executes in its space. See the notation sections of the various kinds of nodes and edges for
more information.

activity name «precondition» constraint
parameter name: Type «postcondition» constraint

k

Figure 12.33 - Activity notation

The notation for classes can be used for diagramming the features of a reflective activity as shown below, with the
keyword “activity” to indicate it is an activity class. Association and state machine notation can also be used as necessary.

«activity»
Activity Name

attribute : type
attribute : type

operation (parameters)
operation (parameters)

Figure 12.34 - Activity class notation

Presentation Options

The round-cornered border of Figure 12.33 may be replaced with the frame notation described in Annex A. Activity
parameter nodes are displayed on the frame. The round-cornered border or frame may be omitted completely. See the
presentation option for “ActivityParameterNode (from BasicActivities)” on page 326.

UML Superstructure Specification, v2.0 311

Examples

The definition of Process Order below uses the border notation to indicate that it is an activity. It has pre- and post
conditions on the order (see Behavior). All invocations of it use the same execution.

Process Order «precondition» Order complete
Requested Order: Order «postcondition» Order closed «singleCopy»
[order
rejected] \ll
Requested - Receive Close
Order Order ‘ Order
[order
m accepted]
Send Make
Invoice Payment
Invoice /
\ J

Figure 12.35 - Example of an activity with input parameter

The diagram below is based on a standard part selection workflow within an airline design process. Notice that the
Standards Engineer insures that the substeps in Provide Required Part are performed in the order specified and under the
conditions specified, but doesn’t necessarily perform the steps. Some of them are performed by the Design Engineer even
though the Standards Engineer is managing the process. The Expert Part Search behavior can result in a part found or not.
When a part is not found, it is assigned to the Assign Standards Engineer activity. Lastly, Schedule Part Mod Workflow
invocation produces entire activities and they are passed to subsequent invocations for scheduling and execution (i.e.,

312 UML Superstructure Specification, v2.0

Schedule Part Mod Workflow, Execute Part Mod Workflow, and Research Production Possibility). In other words,

behaviors can produce tokens that are activities that can in turn be executed; in short, runtime activity generation and

execution.
. . e
Design Part
[part
ID Part Standard found] Use
Design Requirement, Part Search Part
Engineer [part not
found]
[part provided]
Standards Provide
Engineer Required
Part
4 [else] @
. J
[Provide Required Part Standards Design
Engineer Engineer
Jq Clarify
equirement
[stream] [stream]
Assign ; Speci Schedule Review
| Standards Review Part Mfgd Part Mod Schedule
Engineer Requirementy Workflow Workflow
[part not
found]

\.

[reschedule]

Provide
| addt’l part
mod info

[stream]

[stream]

Execute
Part Mod
Workflow,

Research
Production
Possibility,

Figure 12.36 - Workflow example

UML Superstructure Specification, v2.0

313

—

Trouble Ticket

[problem statement rectified]

[cannot
reproduce
problem

Correct
Problem

[known
problem .
and solution]

H

Problem

=0

[not recorded]

[duplication
problem]

Verify
Resolution

[problem not solved]

problem]

Communicatd
Results

ID Problem

Resolution -

Audit and
Record

Figure 12.37 - Workflow example

Below is an example of using class notation to show the class features of an activity. Associations and state machines can
also be shown.

«activity»
Fill Order

costSoFar : USD
timeToComplete : Integer

suspend ()
resume ()

Figure 12.38 - Activity class with attributes and operations

Rationale

Activities are introduced to flow models that coordinate other behaviors, including other flow models. It supports class

features to model control and monitoring of executing processes, and relating them to other objects (for example, in an
organization model).

Changes from previous UML

Activity replaces ActivityGraph in UML 1.5. Activities are redesigned to use a Petri-like semantics instead of state
machines. Among other benefits, this widens the number of flows that can be modeled, especially those that have parallel

flows. Activity also replaces procedures in UML 1.5, as well as the other control and sequencing aspects, including
composite and collection actions.

314 UML Superstructure Specification, v2.0

12.3.5 ActivityEdge (from BasicActivities, CompleteActivities, CompleteStructuredActivities,
IntermediateActivities)

An activity edge is an abstract class for directed connections between two activity nodes.

Generalizations

» “RedefinableElement (from Kernel)” on page 125

Description

ActivityEdge is an abstract class for the connections along which tokens flow between activity nodes. It covers control
and data flow edges. Activity edges can control token flow.

Package CompleteActivities

Complete activity edges can be contained in interruptible regions.

Attributes

No additional attributes

Associations

Package BasicActivities
e activity : Activity[0..1] — Activity containing the edge.

e [inGroup : ActivityGroup[0..*] Groups containing the edge. Multiplicity specialized to [0..1] for
StructuredActivityGroup.

« redefinedElement: ActivityEdge [0..*] Inherited edges replaced by this edge in a specialization of the activity.

e source ActivityNode [1..1] Node from which tokens are taken when they traverse the edge.

e target : ActivityNode [1..1] Node to which tokens are put when they traverse the edge.

Package IntermediateActivities

e inPartition : Partition [0..*] Partitions containing the edge.

e guard : ValueSpecification [1..1] = true Specification evaluated at runtime to determine if the edge can be traversed.
Package CompleteStructuredActivities

¢ inStructuredNode : StructuredActivityNode [0..1] Structured activity node containing the edge.

Package CompleteActivities

e interrupts : InterruptibleActivityRegion [0..1] Region that the edge can interrupt.

e weight : ValueSpecification [1..1] =1 Number of objects consumed from the source node on each traversal.

Constraints

[1] The source and target of an edge must be in the same activity as the edge.

[2] Activity edges may be owned only by activities or groups.

UML Superstructure Specification, v2.0 315

Package CompleteStructuredActivities

[1] Activity edges may be owned by at most one structured node.

Semantics
Activity edges are directed connections, that is, they have a source and a target, along which tokens may flow.

Other rules for when tokens may be passed along the edge depend on the kind of edge and characteristics of its source
and target. See the children of ActivityEdge and ActivityNode. The rules may be optimized to a different algorithm as
long as the effect is the same.

The guard must evaluate to true for every token that is offered to pass along the edge. Tokens in the intermediate level of
activities can only pass along the edge individually at different times. See application of guards at DecisionNode.

Package CompleteActivities

Any number of tokens can pass along the edge, in groups at one time, or individually at different times. The weight
attribute dictates the minimum number of tokens that must traverse the edge at the same time. It is a value specification
evaluated every time a new token becomes available at the source. It must evaluate to a positive LiteralUnlimitedNatural,
and may be a constant. When the minimum number of tokens are offered, all the tokens at the source are offered to the
target all at once. The guard must evaluate to true for each token. If the guard fails for any of the tokens, and this reduces
the number of tokens that can be offered to the target to less than the weight, then all the tokens fail to be offered. An
unlimited weight means that all the tokens at the source are offered to the target. This can be combined with a join to take
all of the tokens at the source when certain conditions hold. See examples in Figure 12.45. A weaker but simpler
alternative to weight is grouping information into larger objects so that a single token carries all necessary data. See
additional functionality for guards at DecisionNode.

Other rules for when tokens may be passed along the edge depend on the kind of edge and characteristics of its source
and target. See the children of ActivityEdge and ActivityNode. The rules may be optimized to a different algorithm as
long as the effect is the same. For example, if the target is an object node that has reached its upper bound, no token can
be passed. The implementation can omit unnecessary weight evaluations until the downstream object node can accept
tokens.

Edges can be named, by inheritance from RedefinableElement, which is a NamedElement. However, edges are not
required to have unique names within an activity. The fact that Activity is a Namespace, inherited through Behavior, does
not affect this, because the containment of edges is through ownedElement, the general ownership metaassociation for
Element that does not imply unique names, rather than ownedMember.

Edges inherited from more general activities can be replaced. See RedefinableElement for more information on overriding
inherited elements.

Semantic Variation Points

See variations at children of ActivityEdge and ActivityNode.

316 UML Superstructure Specification, v2.0

Notation

An activity edge is notated by a stick-arrowhead line connecting two activity nodes. If the edge has a name, it is notated
near the arrow.

name

Regular activity edge Activity edge with name

Figure 12.39 - Activity edge notation

An activity edge can also be notated using a connector, which is a small circle with the name of the edge in it. This is
purely notational. It does not affect the underlying model. The circles and lines involved map to a single activity edge in
the model. Every connector with a given label must be paired with exactly one other with the same label on the same
activity diagram. One connector must have exactly one incoming edge and the other exactly one outgoing edge, each with
the same type of flow, object or control. This assumes the UML 2.0 Diagram Interchange specification supports the
interchange of diagram elements and their mapping to model elements.

%@ P (where, n is connector name)

Figure 12.40 - Activity edge connector notation

Package CompleteActivities

The weight of the edge may be shown in curly braces that contain the weight. The weight is a value specification that is
a positive integer or null, which may be a constant. A weight of null is notated as “all.” When regions have interruptions,
a lightning-bolt style activity edge expresses this interruption, see InterruptibleActivityRegion. See Pin for filled
arrowhead notation.

{weight=n}
{weight=*}
Activity edge for interruptible regions
With edge weight

(where n is a value specification)

Figure 12.41 - Activity edge notation

UML Superstructure Specification, v2.0 317

Examples
Package BasicActivities

In the example illustrated below, the arrowed line connecting Fill Order to Ship Order is a control flow edge. This means
that when the Fill Order behavior is completed, control is passed to the Ship Order. Below it, the same control flow is
shown with an edge name. The one at the bottom left employs connectors, instead of a continuous line. On the upper
right, the arrowed lines starting from Send Invoice and ending at Make Payment (via the Invoice object node) are object
flow edges. This indicates that the flow of Invoice objects goes from Send Invoice to Make Payment.

Order
Send Make
Invoice Payment

Filled

Ship
Order Invoice

Fill Ship Fill shi
- p
Order e e Order Is equivalent to Order Order

Figure 12.42 - Activity edge examples

In the example below, a connector is used to avoid drawing a long edge around one tine of the fork. If a problem is not
priority one, the token going to the connector is sent to the merge instead of the one that would arrive from Revise Plan
for priority one problems. This is equivalent to the activity shown in Figure 12.44, which is how Figure 12.43 is stored in

the model.

Release
Fix

Register
Problem

Figure 12.43 - Connector example

Fix
Problem

318 UML Superstructure Specification, v2.0

Revise
Plan

Evaluate
Impact

[priority=1]

Fix Test
Problem Fix

Figure 12.44 - Equivalent model to Figure 12.43

Register
Problem

Release
Fix

Package CompleteActivities

The figure below illustrates three examples of using the weight attribute. The Cricket example uses a constant weight to
indicate that a cricket team cannot be formed until eleven players are present. The Task example uses a non-constant
weight to indicate that an invoice for a particular job can only be sent when all of its tasks have been completed. The
proposal example depicts an activity for placing bids for a proposal, where many such bids can be placed. Then, when the
bidding period is over, the Award Proposal Bid activity reads all the bids as a single set and determines which vendor to
award the bid.

{weight=11} {weight=no_of_job_tasks}
: Form Sond
glr'CKEt ——=| Cricket Task Job
ayer Team [completed] Invoice
Ready
to award
bid
Award
Bid
Bid Bids for .
arrives Proposal {weight=all}

Figure 12.45 - Activity edge examples

Rationale

Activity edges are introduced to provide a general class for connections between activity nodes.

UML Superstructure Specification, v2.0 319

Changes from previous UML

ActivityEdge replaces the use of (state) Transition in UML 1.5 activity modeling. It also replaces data flow and control
flow links in UML 1.5 action model.

12.3.6 ActivityFinalNode (from BasicActivities, IntermediateActivities)

An activity final node is a final node that stops all flows in an activity.

Generalizations
« “ControlNode (from BasicActivities)” on page 346

» “FinalNode (from IntermediateActivities)” on page 360

Description

An activity may have more than one activity final node. The first one reached stops all flows in the activity.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

A token reaching an activity final node terminates the activity (or structured node, see “StructuredActivityNode (from
CompleteStructuredActivities, StructuredActivities)” on page 396). In particular, it stops all executing actions in the
activity, and destroys all tokens in object nodes, except in the output activity parameter nodes. Terminating the execution
of synchronous invocation actions also terminates whatever behaviors they are waiting on for return. Any behaviors
invoked asynchronously by the activity are not affected. All tokens offered on the incoming edges are accepted. Any
object nodes declared as outputs are passed out of the containing activity, using the null token for object nodes that have
nothing in them. If there is more than one final node in an activity, the first one reached terminates the activity, including
the flow going towards the other activity final.

If it is not desired to abort all flows in the activity, use flow final instead. For example, if the same execution of an
activity is being used for all its invocations, then multiple streams of tokens will be flowing through the same activity. In
this case, it is probably not desired to abort all tokens just because one reaches an activity final. Using a flow final will
simply consume the tokens reaching it without aborting other flows. Or arrange for separate invocations of the activity to
use separate executions of the activity, so tokens from separate invocations will not affect each other.

320 UML Superstructure Specification, v2.0

Notation

Activity final nodes are notated as a solid circle with a hollow circle, as indicated in the figure below. It can be thought
of as a goal notated as “bull’s eye,” or target.

®

Figure 12.46 - Activity final notation

Examples

The first example below depicts that when the Close Order behavior is completed, all tokens in the activity are
terminated. This is indicated by passing control to an activity final node.

Close
Order O
Figure 12.47 - Activity final example

The next figure is based on an example for an employee expense reimbursement process. It uses an activity diagram that
illustrates two parallel flows racing to complete. The first one to reach the activity final aborts the others. The two flows
appear in the same activity so they can share data. For example, who to notify in the case of no action.

[decision = reject] Notify
—é H A _
Reject Reject
[amount >= 200] Submit for >
= Approval
Service @
L
> [decision = accept] Approval) C

Auto
= Approve
[amount < 200] ep
No action Notify Cancel Cancel
timer No Action Transactio Service

Figure 12.48 - Activity final example

UML Superstructure Specification, v2.0 321

In Figure 12.48, two ways to reach an activity final exist; but it is the result of exclusive “or” branching, not a “race”
situation like the previous example. This example uses two activity final nodes, which has the same semantics as using
one with two edges targeting it. The Notify of Modification behavior must not take long or the activity finals might kill it.

[Notify of
J_J_ Modificatio

[decision = modify]

Modify Review Publish
Proposal Proposal o Proposal
[decision = accept]

Notify of
.) Rejection
[decision = reject]

Figure 12.49 - Activity final example

Rationale

Activity final nodes are introduced to model non-local termination of all flows in an activity.

Changes from previous UML

ActivityFinal is new in UML 2.0.
12.3.7 ActivityGroup (from BasicActivities, FundamentalActivities)
(IntermediateActivities) An activity group is an abstract class for defining sets of nodes and edges in an activity.

Generalizations

« “Element (from Kernel)” on page 60

Description

Activity groups are a generic grouping construct for nodes and edges. Nodes and edges can belong to more than one
group. They have no inherent semantics and can be used for various purposes. Subclasses of ActivityGroup may add
semantics.

Attributes

No additional attributes

Associations

Package FundamentalActivities

e activity : Activity [0..1] Activity containing the group.

« containedNode : ActivityNode [0..*] Nodes immediately contained in the group.
e /superGroup : ActivityGroup [0..1] Group immediately containing the group.

e /subgroup : ActivityGroup [0..*] Groups immediately contained in the group.

322 UML Superstructure Specification, v2.0

Package BasicActivities

e containedEdge : ActivityEdge [0..*] Edges immediately contained in the group.

Constraints

[1] All nodes and edges of the group must be in the same activity as the group.

[2] No node or edge in a group may be contained by its subgroups or its containing groups, transitively.
[3] Groups may only be owned by activities or groups.

Semantics

None

Notation

No specific notation

Rationale

Activity groups provide a generic grouping mechanism that can be used for various purposes, as defined in the subclasses
of ActivityGroup, and in extensions and profiles.

Changes from previous UML

ActivityGroups are new in UML 2.0.

12.3.8 ActivityNode (from BasicActivities, CompleteActivities, FundamentalActivities,
IntermediateActivities, StructuredActivities)

An activity node is an abstract class for points in the flow of an activity connected by edges.

Generalizations
» “NamedElement (from Kernel, Dependencies)” on page 93

« “RedefinableElement (from Kernel)” on page 125

Description

An activity node is an abstract class for the steps of an activity. It covers executable nodes, control nodes, and object
nodes.

(BasicActivities) Nodes can be replaced in generalization and (CompleteActivities) be contained in interruptible regions.

Attributes

No additional attributes

Associations

Package FundamentalActivities

e activity : Activity[0..1] Activity containing the node.

UML Superstructure Specification, v2.0 323

e /inGroup : Group [0..*] Groups containing the node. Multiplicity specialized to [0..1] for
StructuredActivityGroup.

Package BasicActivities

e incoming : ActivityEdge [0..*] Edges that have the node as target.

e outgoing : ActivityEdge [0..*] Edges that have the node as source.

« redefinedElement : ActivityNode [0..*] Inherited nodes replaced by this node in a specialization of the activity.
Package IntermediateActivities

e inPartition : Partition [0..*] Partitions containing the node.

Package StructuredActivities

e inStructuredNode : StructuredActivityNode [0..1] Structured activity node containing the node.

Package CompleteActivities

e inInterruptibleRegion : InterruptibleActivityRegion [0..*] Interruptible regions containing the node.

Constraints
[1] Activity nodes can only be owned by activities or groups.
Package StructuredActivities

[1] Activity nodes may be owned by at most one structured node.

Semantics

Nodes can be named, however, nodes are not required to have unique names within an activity to support multiple
invocations of the same behavior or multiple uses of the same action. See Action, which is a kind of node. The fact that
Activity is a Namespace, inherited through Behavior, does not affect this, because the containment of nodes is through
ownedElement, the general ownership metaassociation for Element that does not imply unique names, rather than
ownedMember. Other than naming, and functionality added by the complete version of activities, an activity node is only
a point in an activity at this level of abstraction. See the children of ActivityNode for additional semantics.

Package BasicActivities

Nodes inherited from more general activities can be replaced. See RedefinableElement for more information on
overriding inherited elements, and Activity for more information on activity generalization. See children of ActivityNode
for additional semantics.

324 UML Superstructure Specification, v2.0

Notation

The notations for activity nodes are illustrated below. There are three kinds of nodes: action node, object node, and
control node. See these classes for more information.

O | o ® ®

Action node Object node ——— Control nodes

Figure 12.50 - Activity node notation

Examples

This figure illustrates the following kinds of activity node: action nodes (e.g., Receive Order, Fill Order), object nodes
(Invoice), and control nodes (the initial node before Receive Order, the decision node after Receive Order, and the fork
node and Join node around Ship Order, merge node before Close Order, and activity final after Close Order).

[order
rejected]

o—

Ship Close
Order Order

[order
accepted]

Send
Invoice

Invoice

Figure 12.51 - Activity node example (where the arrowed lines are only the non-activity node symbols)

Rationale

Activity nodes are introduced to provide a general class for nodes connected by activity edges.

Changes from previous UML

ActivityNode replaces the use of StateVertex and its children for activity modeling in UML 1.5.

UML Superstructure Specification, v2.0 325

12.3.9 ActivityParameterNode (from BasicActivities)
An activity parameter node is an object node for inputs and outputs to activities.

Generalizations

» “ObjectNode (from BasicActivities, CompleteActivities)” on page 380

Description

Activity parameters are object nodes at the beginning and end of flows, to accept inputs to an activity and provide outputs
from it.

Activity parameters inherit support for streaming and exceptions from Parameter.

Attributes

No additional attributes

Associations

e parameter : Parameter — The parameter the object node will be accepting and providing values for.

Constraints

[1] Activity parameter nodes must have parameters from the containing activity.

[2] The type of an activity parameter node is the same as the type of its parameter.

[3] Activity parameter nodes must have either no incoming edges or no outgoing edges.

[4] Activity parameter object nodes with no incoming edges and one or more outgoing edges must have a parameter with in
or inout direction.

[5] Activity parameter object nodes with no outgoing edges and one or more incoming edges must have a parameter with out,
inout, or return direction.

See “Action (from CompleteActivities, FundamentalActivities, StructuredActivities)” on page 301.

Semantics

When an activity is invoked, the inputs values are placed as tokens on the input activity parameter nodes, those with no
incoming edges. Outputs of the activity must flow to output activity parameter nodes, those with no outgoing edges. See
semantics at ObjectNode, Action, and ActivityParameterNode.

Notation

The label for parameter nodes can be a full specification of the corresponding parameter.

326 UML Superstructure Specification, v2.0

Also see notation at Activity.

Parameter name: type

(Activity name)

N

Figure 12.52 - Activity notation

The figure below shows annotations for streaming and exception activity parameters, which are the same as for pins. See
Parameter for semantics of stream and exception parameters.

Activity name)
{stream} Parameter name: type

e /

Figure 12.53 - Activity notation

Presentation Options

If the round-cornered border of Figure 12.53 is replaced with the frame notation that is described in Annex A, then
activity parameter nodes overlap the frame instead. If the round-cornered border or frame is omitted completely, then the
activity parameter nodes can be placed anywhere, but it is clearer if they are placed in the same locations they would be
in if the frame or border was shown.

The presentation option at the top of the activity diagram below may be used as notation for a model corresponding to the
notation at the bottom of the diagram.

UML Superstructure Specification, v2.0 327

Parameterl Parameter2

Parameterl P Parameter2

o /

Figure 12.54 - Presentation option for flows between pins and parameter nodes

See presentation option for Pin when parameter is streaming. This can be used for activity parameters also.

Examples

In the example below, production materials are fed into printed circuit board. At the end of the activity, computers are
quality checked.

(Rejected

Computers

Production _Produce Assemble Test
Materials Printed-Circuit Computers Computers |
Boards
Accepted
P(:r:?ctﬁ?t Assembled Computers
Boards Computers)

Figure 12.55 - Example of activity parameters.nodes

328 UML Superstructure Specification, v2.0

In the example below, production materials are streaming in to feed the ongoing printed circuit board fabrication. At the
end of the activity, computers are quality checked. Computers that do not pass the test are exceptions. See Parameter for
semantics of streaming and exception parameters.

= AN
{stream} (/N | Rejected
Computers
Production _Produce Assemble Test
Materials Printed-Circuit Computers Computers |
Boards
Accepted
Fg:?éﬁ?t Assembled Computers
Boards Computers)

Figure 12.56 - Example of activity parameter nodes for streaming and exceptions

Rationale

Activity parameter nodes are introduced to model parameters of activities in a way that integrates easily with the rest of
the flow model.

Changes from previous UML

ActivityParameterNode is new in UML 2.0.
12.3.10 ActivityPartition (from IntermediateActivities)
An activity partition is a kind of activity group for identifying actions that have some characteristic in common.

Generalizations
- “ActivityGroup (from BasicActivities, Fundamental Activities)” on page 322

» “NamedElement (from Kernel, Dependencies)” on page 93

Description

Partitions divide the nodes and edges to constrain and show a view of the contained nodes. Partitions can share contents.
They often correspond to organizational units in a business model. They may be used to allocate characteristics or
resources among the nodes of an activity.

Attributes

e isDimension : Boolean [1..1] =false ~ Tells whether the partition groups other partitions along a dimension.

e isExternal : Boolean [1..1] = false Tells whether the partition represents an entity to which the partitioning structure
does not apply.

UML Superstructure Specification, v2.0 329

Associations

e superPartition : ActivityPartition [0..1] Partition immediately containing the partition. Specializes
ActivityGroup::superGroup.

e represents : Element [0..1] An element constraining behaviors invoked by nodes in the partition.

e subgroup : ActivityPartition [0..*] Partitions immediately contained in the partition. Specialized from

ActivityGroup::subgroup.
e activity : Activity [0..1] The activity containing the partition. Specialized from ActivityGroup.

Constraints
[1] A partition with isDimension = true may not be contained by another partition.
[2] No node or edge of a partition may be in another partition in the same dimension.

[3] If a partition represents a part, then all the non-external partitions in the same dimension and at the same level of nesting
in that dimension must represent parts directly contained in the internal structure of the same classifier.

[4] If a non-external partition represents a classifier and is contained in another partition, then the containing partition must
represent a classifier, and the classifier of the subpartition must be nested in the classifier represented by the containing
partition, or be at the contained end of a strong composition association with the classifier represented by the containing
partition.

[5] If a partition represents a part and is contained by another partition, then the part must be of a classifier represented by the
containing partition, or of a classifier that is the type of a part representing the containing partition.

Semantics

Partitions do not affect the token flow of the model. They constrain and provide a view on the behaviors invoked in
activities. Constraints vary according to the type of element that the partition represents. The following constraints are
normative:

1) Classifier

Behaviors of invocations contained by the partition are the responsibility of instances of the classifier represented by the
partition. This means the context of invoked behaviors is the classifier. Invoked procedures containing a call to an
operation or sending a signal must target objects at runtime that are instances of the classifier.

2) Instance

This imposes the same constraints as classifier, but restricted to a particular instance of the classifier.

3) Part

Behaviors of invocations contained by the partition are the responsibility of instances playing the part represented by the
partition. This imposes the constraints for classifiers above according to the type of the part. In addition, invoked
procedures containing a call to an operation or sending a signal must target objects at runtime that play the part at the time
the message is sent. Just as partitions in the same dimension and nesting must be represented by parts of the same
classifier’s internal structure, all the runtime target objects of operation and signal passing invoked by the same execution
of the activity must play parts of the same instance of the structured classifier. In particular, if an activity is executed in
the context of a particular object at runtime, the parts of that object will be used as targets. If a part has more than one
object playing it at runtime, the invocations are treated as if they were multiple, that is, the calls are sent in parallel, and
the invocation does not complete until all the operations return.

330 UML Superstructure Specification, v2.0

4) Attribute and Value

A partition may be represented by an attribute and its subpartitions by values of that attribute. Behaviors of invocations
contained by the subpartition have this attribute and the value represented by the subpartition. For example, a partition
may represent the location at which a behavior is carried out, and the subpartitions would represent specific values for
that attribute, such as Chicago. The location attribute could be on the process class associated with an activity, or added
in a profile to extend behaviors with these attributes.

A partition may be marked as being a dimension for its subpartitions. For example, an activity may have one dimension
of partitions for location at which the contained behaviors are carried out, and another for the cost of performing them.
Dimension partitions cannot be contained in any other partition.

Elements other than actions that have behaviors or value specifications, such as transformation behaviors on edges, adhere
to the same partition rules above for actions.

Partitions may be used in a way that provides enough information for review by high-level modelers, though not enough
for execution. For example, if a partition represents a classifier, then behaviors in that partition are the responsibility of
instances of the classifier, but the model may or may not say which instance in particular. In particular, a behavior in the
partition calling an operation would be limited to an operation on that classifier, but an input object flow to the invocation
might not be specified to tell which instance should be the target at runtime. The object flow could be specified in a later
stage of development to support execution. Another option would be to use partitions that represent parts. Then when the
activity executes in the context of a particular object, the parts of that object at runtime will be used as targets for the
operation calls, as described above.

External partitions are intentional exceptions to the rules for partition structure. For example, a dimension may have
partitions showing parts of a structured classifier. It can have an external partition that does not represent one of the parts,
but a completely separate classifier. In business modeling, external partitions can be used to model entities outside a
business.

Notation

Activity partition may be indicated with two, usually parallel lines, either horizontal or vertical, and a name labeling the
partition in a box at one end. Any activity nodes and edges placed between these lines are considered to be contained
within the partition. Swimlanes can express hierarchical partitioning by representing the children in the hierarchy as
further partitioning of the parent partition, as illustrated in b), below. Diagrams can also be partitioned
multidimensionally, as depicted in c), below, where, each swim cell is an intersection of multiple partitions. The
specification for each dimension (e.g., part, attribute) is expressed in next to the appropriate partition set.

UML Superstructure Specification, v2.0 331

° Dimension name
1S
% Partition Partition
£ Name-3 Name-4
=
&
a) Partition using a swimlane notation o 183
E|E&
c g zZ
S 5
o = 2
IS =
A EE £ sz
2l & Sz
[- c
El £ |s
ol d)£ e L S
g & c) Partition using a multidimensional
Eel - - - -
32 hierarchical swimlane notation

b) Partition using a hierarchical swimlane notation
Figure 12.57 - Activity partition notations

In some diagramming situations, using parallel lines to delineate partitions is not practical. An alternate is to place the
partition name in parenthesis above the activity name, as illustrated for actions in a), below. A comma-delimited list of
partition names means that the node is contained in more than one partition. A double colon within a partition name
indicates that the partition is nested, with the larger partitions coming earlier in the name. When activities are considered
to occur outside the domain of a particular model, the partition can be labeled with the keyword «external», as illustrated
in b) below. Whenever an activity in a swimlane is marked «external», this overrides the swimlane and dimension
designation.

(Partition Name) «external»
action Partition Name
J
«external»
(Namel, Name2) "\ (PartitionName)
action action
J
(Name::Subname) "\
action
), b) Partition notated to occur outside

a) Partition notated on a specific activity the primary concern of the model.

Figure 12.58 - Activity partition notations

Presentation Options

When partitions are combined with the frame notation for Activity, the outside edges of the top level partition can be
merged with the activity frame.

332 UML Superstructure Specification, v2.0

Examples

The figures below illustrate an example of partitioning the order processing activity diagram into “swim lanes.” The top
partition contains the portion of an activity for which the Order Department is responsible; the middle partition, the
Accounting Department, and the bottom the Customer. These are attributes of the behavior invoked in the partitions,

except for Customer, which is external to the domain. The flow of the invoice is not a behavior, so it does not need to
appear in a partition.

I
[]

5|

s |c

o Il . . .
g |g Receive Fill Ship

a | Ord

o e Order rder Order
3 S [order

2 |O accepted]

E

2 |6

g |E

2 a

= § Send Accept
2 13 Invoice Payment
¥ <

Invoice

2]z

=N =

s |

<19 Make Payment

210

Figure 12.59 - Activity partition using swimlane example

UML Superstructure Specification, v2.0 333

(Order (Order

Department) Department)
9 Fill Order Ship Order
[order
accepted]

(Accounting

L= | Department)
Send Invoice

«external»

(Customer)
Make

Payment

(Accounting
Department)
Accept
Payment

Invoice

Figure 12.60 - Activity partition using annotation example

Department)
Close Order

The example below depicts multidimensional swim lanes. The Receive Order and Fill Order behaviors are performed by
an instance of the Order Processor class, situated in Seattle, but not necessarily the same instance for both behaviors.

Even though the Make Payment is contained within the Seattle/Accounting Clerk swim cell, its performer and location are
not specified by the containing partition, because it has an overriding partition.

«attribute» performingLocation:Location

Seattle Reno

2
A0 . i ; Cl
< = Receive Fill Ship ose
ST |@=> Order
vy Order - Order =

g [order

accepted]

<
G «external»
2o Send (Customer) Accept
£ Invoice Make Payment Payment
¥5

[=]

S

< Invoice

Figure 12.61 - Activity partition using multidimensional swimlane example

334

UML Superstructure Specification, v2.0

Rationale

Activity partitions are introduced to support the assignment of domain-specific information to nodes and edges.

Changes from previous UML

Edges can be contained in partitions in UML 2.0. Additional notation is provided for cases when swimlanes are too
cumbersome. Partitions can be hierarchical and multidimensional. The relation to classifier, parts, and attributes is
formalized, including external partitions as exceptions to these rules.

12.3.11 AddVariableValueAction (as specialized)
See “AddVariableValueAction (from StructuredActions)” on page 234.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

See “AddVariableValueAction (from StructuredActions)” on page 234.
Notation

Presentation Options

The presentation option at the top of Figure 12.62 may be used as notation for a model corresponding to the notation at
the bottom of the figure. If the action has non-defaulted metaattribute values, these can be shown with a property list near
the variable name.

VariableName
Action l

Add to
VariableName

Figure 12.62 - Presentation option for AddVariableValueAction

UML Superstructure Specification, v2.0 335

12.3.12 Behavior (from CompleteActivities)
Behavior is specialized to own zero or more ParameterSets.

Generalizations

- “Behavior (from BasicBehaviors)” on page 416 (merge increment).

Description

The concept of Behavior is extended to own ParameterSets.

Attributes

No additional attributes.

Associations

e ownedParameterSets : ParameterSet[0..*] = The ParameterSets owned by this Behavior.

Constraints

See “ParameterSet (from CompleteActivities)” on page 386.

Semantics

See semantics of “ParameterSet (from CompleteActivities)” on page 386.

Notation

See notation for “ParameterSet (from CompleteActivities)” on page 386.

Examples

See examples for “ParameterSet (from CompleteActivities)” on page 386.

Changes from previous UML

ParameterSet is new in UML 2.0.
12.3.13 BehavioralFeature (from CompleteActivities)

BehavioralFeature is specialized to own zero or more ParameterSets.

Generalizations

» “BehavioralFeature (from BasicBehaviors, Communications)” on page 418 (merge increment).

Description

The concept of BehavioralFeature is extended to own ParameterSets.

336 UML Superstructure Specification, v2.0

Attributes

No additional attributes

Associations
e ownedParameterSets : ParameterSet[0..*] = The ParameterSets owned by this BehavioralFeature.
Constraints

See “ParameterSet (from CompleteActivities)” on page 386.

Semantics

See semantics of “ParameterSet (from CompleteActivities)” on page 386.

Notation

See notation for “ParameterSet (from CompleteActivities)” on page 386.

Examples

See examples for “ParameterSet (from CompleteActivities)” on page 386.

Changes from previous UML

ParameterSet is new in UML 2.0.
12.3.14 CallBehaviorAction (as specialized)

“CallBehaviorAction (from BasicActions)” on page 237

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

[1] When all the control and data flow prerequisites of the action execution are satisfied, CallBehaviorAction consumes its
input tokens and invokes its specified behavior. The values in the input tokens are made available to the invoked behavior
as argument values. When the behavior is finished, tokens are offered on all outgoing control edges, with a copy made for
each control edge. Object and data tokens are offered on the outgoing object flow edges as determined by the output pins.
Each parameter of the behavior of the action provides output to a pin or takes input from one. See Pin. The inputs to the
action determine the actual arguments of the call.

[2] If the call is asynchronous, a control token is offered to each outgoing control edge of the action and execution of the
action is complete. Execution of the invoked behavior proceeds without any further dependency on the execution of the

UML Superstructure Specification, v2.0 337

activity containing the invoking action. Once the invocation of the behavior has been initiated, execution of the
asynchronous action is complete.

[3] An asynchronous invocation completes when its behavior is started, or is at least ensured to be started at some point.
When an asynchronous invocation is done, the flow continues regardless of the status of the invoked behavior. Any return
or out values from the invoked behavior are not passed back to the containing activity. For example, the containing
activity may complete even though the invoked behavior is not finished. This is why asynchronous invocation is not the
same as using a fork to invoke the behavior followed by a flow final. A forked behavior still needs to finish for the
containing activity to finish. If it is desired to complete the invocation, but have some outputs provided later when they are
needed, then use a fork to give the invocation its own flow line, and rejoin the outputs of the invocation to the original
flow when they are needed.

[4] If the call is synchronous, execution of the calling action is blocked until it receives a reply token from the invoked
behavior. The reply token includes values for any return, out, or inout parameters.

[5] If the call is synchronous, when the execution of the invoked behavior completes, the result values are placed as object
tokens on the result pins of the call behavior action, a control token is offered on each outgoing control edge of the call
behavior action, and the execution of the action is complete. (StructuredActions, ExtraStructuredActivities) If the
execution of the invoked behavior yields an exception, the exception is transmitted to the call behavior action to begin the
search for the handler. See “RaiseExceptionAction (from StructuredActions)” on page 258.

Notation

The name of the behavior, or other description of it, that is performed by the action is placed inside the rectangle. If the
node name is different than the behavior name, then it appears in the symbol instead. Pre- and postconditions on the
behavior can be shown similarly to Figure 12.29 on page 303, using keywords «precondition» and «postcondition».

[behavior name]

Figure 12.63 CallBehaviorAction

The call of an activity is indicated by placing a rake-style symbol within the symbol. The rake resembles a miniature
hierarchy, indicating that this invocation starts another activity that represents a further decomposition. An alternative
notation in the case of an invoked activity is to show the contents of the invoked activity inside a large round-cornered
rectangle. Edges flowing into the invocation connect to the parameter object nodes in the invoked activity. The parameter
object nodes are shown on the border of the invoked activity. The model is the same regardless of the choice of notation.
This assumes the UML 2.0 Diagram Interchange specification supports the interchange of diagram elements and their
mapping to model elements.

338 UML Superstructure Specification, v2.0

(" Activity name \

Parameter name: type

Activity

name |+|

; ‘-)

(Note: the border and name are the notation; the
other symbols are present to provide clarity, only.)

Figure 12.64 - Invoking Activities that have nodes and edges

Below is an example of invoking an activity called FillOrder.

OFEj“ |
rder

Figure 12.65 - Example of invoking an activity

Rationale

“CallBehaviorAction (from BasicActions)” on page 237

Changes from previous UML

“CallBehaviorAction (from BasicActions)” on page 237
12.3.15 CallOperationAction (as specialized)

See “CallOperationAction (from BasicActions)” on page 239.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

See “CallOperationAction (from BasicActions)” on page 239.

UML Superstructure Specification, v2.0

339

Notation

The name of the operation, or other description of it, is displayed in the symbol. Pre- and postconditions on the operation
can be shown similarly to Figure 12.29 on page 303, using keywords «precondition» and «postcondition».

[operation name]

Figure 12.66 - Calling an operation

Presentation Options

If the node has a different name than the operation, then this is used in the symbol instead. The name of the class may
optionally appear below the name of the operation, in parentheses postfixed by a double colon. If the node name is
different than the operation name, then the behavioral feature name may be shown after the double colon.

name name
(ClassName::) (ClassName::OperationName)

Figure 12.67 - Invoking behavioral feature notations

Rationale

See “CallOperationAction (from BasicActions)” on page 239.

Changes from previous UML

See “CallOperationAction (from BasicActions)” on page 239.
12.3.16 CentralBufferNode (from IntermediateActivities)
A central buffer node is an object node for managing flows from multiple sources and destinations.

Generalizations

» “ObjectNode (from BasicActivities, CompleteActivities)” on page 380

Description

A central buffer node accepts tokens from upstream object nodes and passes them along to downstream object nodes.
They act as a buffer for multiple in flows and out flows from other object nodes. They do not connect directly to actions.

Attributes

No additional attributes

340 UML Superstructure Specification, v2.0

Associations

No additional associations

Semantics

See semantics at ObjectNode. All object nodes have buffer functionality, but central buffers differ in that they are not tied
to an action as pins are, or to an activity as activity parameter nodes are. See example below.

Notation

See notation at ObjectNode. A central buffer may also have the keyword «centralBuffer» as shown below. This is useful
when it needs to be distinguished from the standalone notation for pins shown on the left of Figure 12.119 and the top left
of Figure 12.126.

«centralBuffer»

Figure 12.68 - Optional central buffer notation

Examples

In the example below, the behaviors for making parts at two factories produce finished parts. The central buffer node
collects the parts, and behaviors after it in the flow use them as needed. All the parts that are not used will be packed as
spares, and vice versa, because each token can only be drawn from the object node by one outgoing edge. The choice in
this example is non-deterministic.

Part Part
[Finished] [Finished]

Make Parts
at Factory 1

«centralBuffer»
Part
[Finished]
Make Parts Part
at Factory?2 Part [Finished]

[Finished]

Figure 12.69 - Central buffer node example

Rationale

Central buffer nodes give additional support for queuing and competition between flowing objects.

Changes from previous UML

CentralBufferNode is new in UML 2.0.

UML Superstructure Specification, v2.0 341

12.3.17 Clause (from CompleteStructuredActivities, StructuredActivities)

Generalizations

« “Element (from Kernel)” on page 60

Description

A clause is an element that represents a single branch of a conditional construct, including a test and a body section. The
body section is executed only if (but not necessarily if) the test section evaluates true.

Attributes

No additional attributes

Associations

Package StructuredActivities

e test: ActivityNode [0..*] A nested activity fragment with a designated output pin that specifies the result of the
test.
e body : ActivityNode [0..*] A nested activity fragment that is executed if the test evaluates to true and the clause

is chosen over any concurrent clauses that also evaluate to true.

» predecessorClause : Clause [*] A set of clauses whose tests must all evaluate false before the current clause can be

tested.
e successorClause : Clause [*] A set of clauses that may not be tested unless the current clause tests false.
e decider : OutputPin [1] An output pin within the test fragment the value of which is examined after execution

of the test to determine whether the body should be executed.

Package CompleteStructuredActivities

e bodyOutput : OutputPin [0..*] A list of output pins within the body fragment whose values are copied to the result pins
of the containing conditional node or conditional node after execution of the clause body.

Semantics

The semantics are explained under “ConditionalNode (from CompleteStructuredActivities, StructuredActivities).”
12.3.18 ConditionalNode (from CompleteStructuredActivities, StructuredActivities)
A conditional node is a structured activity node that represents an exclusive choice among some number of alternatives.

Generalizations

« “StructuredActivityNode (from CompleteStructuredActivities, StructuredActivities)” on page 396

Description

A conditional node consists of one or more clauses. Each clause consists of a test section and a body section. When the
conditional node begins execution, the test sections of the clauses are executed. If one or more test sections yield a true
value, one of the corresponding body sections will be executed. If more than one test section yields a true value, only one

342 UML Superstructure Specification, v2.0

body section will be executed. The choice is nondeterministic unless the test sequence of clauses is specified. If no test
section yields a true value, then no body section is executed; this may be a semantic error if output values are expected
from the conditional node.

In general, test section may be executed in any order, including simultaneously (if the underlying execution architecture
supports it). The result may therefore be nondeterministic if more than one test section can be true concurrently. To
enforce ordering of evaluation, sequencing constraints may be specified among clauses. One frequent case is a total
ordering of clauses, in which case the result is determinate. If it is impossible for more than one test section to evaluate
true simultaneously, the result is deterministic and it is unnecessary to order the clauses, as ordering may impose
undesirable and unnecessary restrictions on implementation. Note that, although evaluation of test sections may be
specified as concurrent, this does not require that the implementation evaluate them in parallel; it merely means that the
model does not impose any order on evaluation.

An “else” clause is a clause that is a successor to all other clauses in the conditional and whose test part always returns
true. A notational gloss is provided for this frequent situation.

Output values created in the test or body section of a clause are potentially available for use outside the conditional. However,
any value used outside the conditional must be created in every clause, otherwise an undefined value would be accessed if a
clause not defining the value were executed.

Attributes

Package StructuredActivities
¢ isAssured : Boolean If true, the modeler asserts that at least one test will succeed.

e isDeterminate: Boolean If true, the modeler asserts that at most one test will succeed concurrently and therefore
the choice of clause is deterministic.

Associations
Package StructuredActivities
e clause: Clause[1..*] Set of clauses composing the conditional.

Package CompleteStructuredActivities

e result: OutputPin [0..*] A list of output pins that constitute the data flow outputs of the conditional.

Constraints

No additional constraints

Semantics

No part of a conditional node is executed until all control-flow or data-flow predecessors of the conditional node have
completed execution. When all such predecessors have completed execution and made tokens available to inputs of the
conditional node, the conditional node captures the input tokens and begins execution.

The test section of any clause without a predecessorClause is eligible for execution immediately. If a test section yields a
false value, a control token is delivered to all of its successorClauses. Any test section with a predecessorClause is
eligible for execution when it receives control tokens from each of its predecessor clauses.

UML Superstructure Specification, v2.0 343

If a test section yields a true value, then the corresponding body section is executed provided another test section does not
also yield a true value. If more than one test section yields a true value, exactly one body section will be executed, but it
is indeterminate which one will be executed. When a body section is chosen for execution, the evaluation of all other test
parts is terminated (just like an interrupting edge). If some of the test parts have external effects, terminating them may be
another source of indeterminacy. Although test parts are permitted to produce side effects, avoiding side effects in tests
will greatly reduce the chance of logical errors and race conditions in a model and in any code generated from it.

If no test section yields a true value, the execution of the conditional node terminates with no outputs. This may be a
semantic error if a subsequent node requires an output from the conditional. It is safe if none of the clauses create outputs.
If the isAssured attribute of the conditional node has a true value, the modeler asserts that at least one test section will
yield a test value. If the isDeterminate attribute has a true value, the modeler asserts that at most one test section will
concurrently yield a test value (the predecessor relationship may be used to enforce this assertion). Note that it is, in
general, impossible for a computer system to verify these assertions, so they may provide useful information to a code
generator, but if the assertions are incorrect, then incorrect code may be generated.

When a body section is chosen for execution, all of its hodes without predecessor flows within the conditional receive
control tokens and are enabled for execution. When execution of all nodes within the body section has completed,
execution of the conditional node is complete and its successors are enabled.

Within the body section, variables defined in the loop node or in some higher-level enclosing node may be accessed and
updated with new values. Values that are used in a data flow manner must be created or updated in all clauses of the
conditional, otherwise undefined values would be accessed.

Notation

No specific notation.

Style Guidelines

Mixing sequential and concurrent tests in one conditional may be confusing, although it is permitted.

Rationale

Conditional nodes are introduced to provide a structured way to represent decisions.

Changes from previous UML

Conditional nodes replace ConditionalAction from the UML 1.5 action model.
12.3.19 ControlFlow (from BasicActivities)

A control flow is an edge that starts an activity node after the previous one is finished.

Generalizations

« “ActivityEdge (from BasicActivities, CompleteActivities, CompleteStructuredActivities, IntermediateActivities)” on
page 315.

Description

Objects and data cannot pass along a control flow edge.

344 UML Superstructure Specification, v2.0

Attributes

No additional attributes

Associations

No additional associations

Constraints
[1] Control flows may not have object nodes at either end, except for object nodes with control type.
Semantics

See semantics inherited from ActivityEdge. A control flow is an activity edge that only passes control tokens. Tokens
offered by the source node are all offered to the target node.

Notation

A control flow is notated by an arrowed line connecting two actions.

%
Control flow Control flow edge linking
(without actions) two actions

Figure 12.70 - Control flow notation

Examples

The figure below depicts an example of the Fill Order action passing control to the Ship Order action. The activity edge
between the two is a control flow, which indicates that when Fill Order is completed, Ship Order is invoked.

Figure 12.71 - Control flow example

Rationale

Control flow is introduced to model the sequencing of behaviors that does not involve the flow of objects.

Changes from previous UML

Explicitly modeled control flows are new to activity modeling in UML 2.0. They replace the use of (state) Transition in
UML 1.5 activity modeling. They replace control flows in UML 1.5 action model.

UML Superstructure Specification, v2.0 345

12.3.20 ControlNode (from BasicActivities)
A control node is an abstract activity node that coordinates flows in an activity.

Generalizations

- “ActivityNode (from BasicActivities, CompleteActivities, Fundamental Activities, IntermediateActivities,
StructuredActivities)” on page 323.

Description

A control node is an activity node used to coordinate the flows between other nodes. It covers initial node, final node and
its children, fork node, join node, decision node, and merge node.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

See semantics at Activity. See subclasses for the semantics of each kind of control node.

Notation
The notations for control nodes are illustrated below: decision node, initial node, activity final, and flow final.

Fork node and join node are the same symbol, they have different semantics and are distinguished notationally by the way
edges are used with them. For more information, see ForkNode and JoinNode below.

O o ® 02

Decision node Fork node, join node Initial node Activity final Flow final

or Merge node - Final nodes

Figure 12.72 - Control node notations

Examples

The figure below contains examples of various kinds of control nodes. An initial node is depicted in the upper left as
triggering the Receive Order action. A decision node after Received Order illustrates branching based on order rejected or
order accepted conditions. Fill Order is followed by a fork node that passes control both to Send Invoice and Ship Order.

346 UML Superstructure Specification, v2.0

The join node indicates that control will be passed to the merge when both Ship Order and Accept Payment are
completed. Since a merge will just pass the token along, Close Order activity will be invoked. (Control is also passed to
Close Order whenever an order is rejected.) When Close Order is completed, control passes to an activity final.

[order
rejected]

Ship Close
‘

[order
accepted]
= Sen_d Make Accept
Invoice Payment Payment
Invoice

Figure 12.73 - Control node examples (with accompanying actions and control flows)

Rationale

Control nodes are introduced to provide a general class for nodes that coordinate flows in an activity.

Changes from previous UML

ControlNode replaces the use of PseudoState in UML 1.5 activity modeling.
12.3.21 DataStoreNode (from CompleteActivities)
A data store node is a central buffer node for non-transient information.

Generalizations

« “CentralBufferNode (from IntermediateActivities)” on page 340

Description

A data store keeps all tokens that enter it, copying them when they are chosen to move downstream. Incoming tokens
containing a particular object replace any tokens in the object node containing that object.

Attributes

No additional attributes

UML Superstructure Specification, v2.0 347

Associations

No additional associations

Constraints

No additional constraints

Semantics

Tokens chosen to move downstream are copied so that tokens appear to never leave the data store. If a token containing
an object is chosen to move into a data store, and there is a token containing that object already in the data store, then the
chosen token replaces the existing one. Selection and transformation behavior on outgoing edges can be designed to get
information out of the data store, as if a query were being performed. For example, the selection behavior can identify an
object to retrieve and the transformation behavior can get the value of an attribute on that object. Selection can also be
designed to only succeed when a downstream action has control passed to it, thereby implementing the pull semantics of
earlier forms of data flow.

Notation

The data store notation is a special case of the object node notation, using the label «datastore».

«datastore»
name
[state]

Figure 12.74 - Data store node notation.

Examples

The figure below is an example of using a data store node.

Hire «datastore» | r i oht=all}
Employee Personnel
database Review

Employee

Once a year

«selection»
employee.
assignment = null

Assign
Employee

Figure 12.75 - Data store node example

Rationale

Data stores are introduced to support earlier forms of data flow modeling in which data is persistent and used as needed,
rather than transient and used when available.

348 UML Superstructure Specification, v2.0

Changes from previous UML

Data stores are new in UML 2.0.
12.3.22 DecisionNode (from IntermediateActivities)

A decision node is a control node that chooses between outgoing flows.

Generalizations

» “ControlNode (from BasicActivities)” on page 346

Description

A decision node has one incoming edge and multiple outgoing activity edges.

Attributes

No additional attributes

Associations

e decisionlnput : Behavior [0..1] Provides input to guard specifications on edges outgoing from the decision node.

Constraints
[1] A decision node has one incoming edge.

[2] A decision input behavior has zero or one input parameter and one output parameter. Any input parameter must be the
same as or a supertype of the type of object tokens coming along the incoming edge. The behavior cannot have side
effects.

[3] The edges coming into and out of a decision node must be either all object flows or all control flows.

Semantics

Each token arriving at a decision node can traverse only one outgoing edge. Tokens are not duplicated. Each token offered
by the incoming edge is offered to the outgoing edges.

Most commonly, guards of the outgoing edges are evaluated to determine which edge should be traversed. The order in
which guards are evaluated is not defined, because edges in general are not required to determine which tokens they
accept in any particular order. The modeler should arrange that each token only be chosen to traverse one outgoing edge,
otherwise there will be race conditions among the outgoing edges. If the implementation can ensure that only one guard
will succeed, it is not required to evaluate all guards when one is found that does. For decision points, a predefined guard
“else” may be defined for at most one outgoing edge. This guard succeeds for a token only if the token is not accepted by
all the other edges outgoing from the decision point.

Notice that the semantics only requires that the token traverse one edge, rather than be offered to only one edge. Multiple
edges may be offered the token, but if only one of them has a target that accepts the token, then that edge is traversed. If
multiple edges accept the token and have approval from their targets for traversal at the same time, then the semantics is
not defined.

UML Superstructure Specification, v2.0 349

If a decision input behavior is specified, then each data token is passed to the behavior before guards are evaluated on the
outgoing edges. The behavior is invoked without input for control tokens. The output of the behavior is available to the
guard. Because the behavior is used during the process of offering tokens to outgoing edges, it may be run many times on
the same token before the token is accepted by those edges. This means the behavior cannot have side effects. It may not
modify objects, but it may for example, navigate from one object to another or get an attribute value from an object.

Notation

The notation for a decision node is a diamond-shaped symbol, as illustrated on the left side of the figure below. Decision
input behavior is specified by the keyword «decisionlnput» placed in a note symbol, and attached to the appropriate
decision node symbol as illustrated in the figure below.

A decision node must have a single activity edge entering it, and one or more edges leaving it. The functionality of
decision node and merge node can be combined by using the same node symbol, as illustrated at the right side of the
figure below. This case maps to a model containing a a merge node with all the incoming edges shown in the diagram and
one outgoing edge to a decision node that has all the outgoing edges shown in the diagram. It assumes the UML 2.0
Diagram Interchange RFP supports the interchange of diagram elements and their mapping to model elements.

decision condition

«decisionInput» BI

.

<> <> Decision node Decision node and merge node used

Decision node ?v?;jsggﬂar\‘/?g? (with control flows) together, sharing the same symbol

Figure 12.76 - Decision node notation

Examples

The figure below contains a decision node that follows the Received Order behavior. The branching is based on whether
order was rejected or accepted. An order accepted condition results in passing control to Fill Order and rejected orders to
Close Order.

[order

rejected] \1/

accepted]

Figure 12.77 - Decision node example

350 UML Superstructure Specification, v2.0

The example in the figure below illustrates an order process example. Here, an order item is pulled from stock and
prepared for delivery. Since the item has been removed from inventory, the reorder level should also be checked; and if
the actual level falls below a pre-specified reorder point, more of the same type of item should be reordered.

Prepare ltem Ship

Pull for Delivery Order

Order Item
rom Stoc

Reorder
Goods

* «decisionlnput»
inventoryLevel

< reorderPoint

Figure 12.78 - Decision node example

Rationale

Decision nodes are introduced to support conditionals in activities. Decision input behaviors are introduced to avoid
redundant recalculations in guards.

Changes from previous UML

Decision nodes replace the use of PseudoState with junction kind in UML 1.5 activity modeling.
12.3.23 ExceptionHandler (from ExtraStructuredActivities)

Generalizations

« “Element (from Kernel)” on page 60

Description

An exception handler is an element that specifies a body to execute in case the specified exception occurs during the
execution of the protected node.

Associations

e protectedNode : ExecutableNode [1..1] The node protected by the handler. The handler is examined if an exception
propagates to the outside of the node.

« handlerBody : ExecutableNode [1..1] A node that is executed if the handler satisfies an uncaught exception.

e exceptionType : Classsifier [1..*] The kind of instances that the handler catches. If an exception occurs whose

type is any of the classifiers in the set, the handler catches the exception and
executes its body.

e exceptionlnput : ObjectNode [1..1] An object node within the handler body. When the handler catches an
exception, the exception token is placed in this node, causing the body to
execute.

UML Superstructure Specification, v2.0 351

Constraints
[1] The exception body may not have any explicit input or output edges.

[2] The result pins of the exception handler body must correspond in number and types to the result pins of the protected
node.

[3] The handler body has one input, and that input is the same as the exception input.

Semantics

If a RaiseExceptionAction is executed, all the tokens in the immediately containing structured node or activity are
terminated. Then the set of execution handlers on the structured node or invocation action of the activity is examined for
a handler that matches the exception. A handler matches if the type of the exception is the same as or a descendant of one
of the exception classifiers specified in the handler. If there is a match, the handler “catches” the exception. The exception
object is placed in the exceptionInput node as a token to start execution of the handler body.

If the exception is not caught by any of the handlers on the node or invocation action, the exception handling process
repeats, propagating to the enclosing structured node or activity. If the exception propagates to the topmost level of the
system and is not caught, the behavior of the system is unspecified. Profiles may specify what happens in such cases.

The handler body has no explicit input or output edges. It has the same access to its surrounding context as the protected
node. The result tokens of the handler body become the result tokens of the protected node. Any control edges leaving the
protected node receive control tokens on completion of execution of the handler body with the handler catching the
exception. When the handler body completes execution, it is as if the protected node had completed execution.

Notation

The notation for exception handlers is illustrated in Figure 12.79. An exception handler for a protected node is shown by
drawing a “lightning bolt” symbol from the boundary of the protected node to a small square on the boundary of the
exception handler. The name of the exception type is placed next to the lightning bolt. The small square is the exception
input node, and it must be owned by the handler body. Its type is the given exception type. Both the protected node and
the exception handler must be at the same nesting level. (Otherwise the notation could be misinterpreted as an
interrupting edge, which crosses a boundary.) Multiple exception handlers may be attached to the same protected node,
each by its own lightning bolt.

Protected
Node

HandlerBody
Node

ExceptionType

Figure 12.79 - Exception Handler Notation

352 UML Superstructure Specification, v2.0

Presentation Options

An option for notating an interrupting edge is a zig-zag adornment on a straight line.

Protected HandlerBody

Node Node

Figure 12.80 - Exception Handler Presentation option

Examples

Figure 12.81 shows a matrix calculation. First a matrix is inverted, then it is multiplied by a vector to produce a vector. If
the matrix is singular, the inversion will fail and a SingularMatrix exception occurs. This exception is handled by the
exception handler labeled SingularMatrix, which executes the region containing the SubstituteVectorl action. If an
overflow exception occurs during either the matrix inversion or the vector multiplication, the region containing the
SubstituteVector2 action is executed.

The successors to an exception handler body are the same as the successors to the protected node. It is unnecessary to
show control flow from the handler body. Regardless of whether the matrix operations complete without exception or
whether one of the exception handlers is triggered, the action PrintResults is executed next.

4 ' N R\

SingularMatrix I
Invert 1 Substitute
Matrix Vectorl
Multiply
Vector Overflow l)
l Substitute
9 L Vector2

Print
Results

Figure 12.81 - Exception Handler example

Changes from previous UML

ExceptionHandler replaces JumpHandler in UML 1.5.

UML Superstructure Specification, v2.0 353

Modeling of traditional break and continue statements can be accomplished using direct control flow from the statement
to the control target. UML 1.5 combined the modeling of breaks and continues with exceptions, but that is no longer
necessary and it is not recommended in this specification.

12.3.24 ExecutableNode (from ExtraStructuredActivities, StructuredActivities)

Generalizations

« “ActivityNode (from BasicActivities, CompleteActivities, Fundamental Activities, IntermediateActivities,
StructuredActivities)” on page 323.

Description

An executable node is an abstract class for activity nodes that may be executed. It is used as an attachment point for
exception handlers.

Associations

Package ExtraStructuredActivities

* handler : ExceptionHandler [0..*] A set of exception handlers that are examined if an uncaught exception
propagates to the outer level of the executable node.

12.3.25 ExpansionKind (from ExtraStructuredActivities)

Generalizations

None

Description

ExpansionKind is an enumeration type used to specify how multiple executions of an expansion region interact. See
“ExpansionRegion (from ExtraStructuredActivities).”

Enumeration Literals
e parallel The executions are independent. They may be executed concurrently.
e iterative The executions are dependent and must be executed one at a time, in order of the collection elements.

e stream A stream of collection elements flows into a single execution, in order of the collection elements.
12.3.26 ExpansionNode (from ExtraStructuredActivities)

Generalizations

» “ObjectNode (from BasicActivities, CompleteActivities)” on page 380

Description

An expansion node is an object node used to indicate a flow across the boundary of an expansion region. A flow into a
region contains a collection that is broken into its individual elements inside the region, which is executed once per
element. A flow out of a region combines individual elements into a collection for use outside the region.

354 UML Superstructure Specification, v2.0

Associations
e regionAsinput : ExpansionRegion[0..1] The expansion region for which the node is an input.

e regionAsOQutput : ExpansionRegion[0..1] The expansion region for which the node is an output.

Semantics

See “ExpansionRegion (from ExtraStructuredActivities).”

Notation

See “ExpansionRegion (from ExtraStructuredActivities).”
12.3.27 ExpansionRegion (from ExtraStructuredActivities)

An expansion region is a structured activity region that executes multiple times corresponding to elements of an input
collection.

Generalizations

» “StructuredActivityNode (from CompleteStructuredActivities, StructuredActivities)” on page 396

Description

An expansion region is a strictly nested region of an activity with explicit input and outputs (modeled as
ExpansionNodes). Each input is a collection of values. If there are multiple input pins, each of them must hold the same
kind of collection, although the types of the elements in the different collections may vary. The expansion region is
executed once for each element (or position) in the input collection.

If an expansion region has outputs, they must be collections of the same kind and must contain elements of the same type
as the corresponding inputs. The number of output collections at runtime can differ from the number of input collections.
On each execution of the region, an output value from the region is inserted into an output collection at the same position
as the input elements. If the region execution ends with no output, then nothing is added to the output collection. When
this happens the output collection will not have the same number of elements as the input collections, the region acts as a
filter. If all the executions provide an output to the collection, then the output collections will have the same number of
elements as the input collections.

The inputs and outputs to an expansion region are modeled as ExpansionNodes. From “outside” of the region, the values
on these nodes appear as collections. From “inside” the region the values appear as elements of the collections. Object
flow edges connect pins outside the region to input and output expansion nodes as collections. Object flow edges connect
pins inside the region to input and output expansion nodes as individual elements. From the inside of the region, these
nodes are visible as individual values. If an expansion node has a name, it is the name of the individual element within
the region.

Any object flow edges that cross the boundary of the region, without passing through expansion nodes, provide values
that are fixed within the different executions of the region.

Attributes

e mode : ExpansionKind - The way in which the executions interact:
parallel - all interactions are independent.
iterative - the interactions occur in order of the elements.
stream - a stream of values flows into a single execution.

UML Superstructure Specification, v2.0 355

Associations

* inputElement : ExpansionNode[1..*]
An object node that holds a separate element of the input collection during each of the multiple executions of the region.

e outputElement : ExpansionNode[0..*]
An object node that accepts a separate element of the output collection during each of the multiple executions of the
region. The values are formed into a collection that is available when the execution of the region is complete.

Constraints
[1] An ExpansionRegion must have one or more argument ExpansionNodes and zero or more result ExpansionNodes.

Semantics

When an execution of an activity makes a token available to the input of an expansion region, the expansion region
consumes the token and begins execution. The expansion region is executed once for each element in the collection (or
once per element position, if there are multiple collections). The concurrency attribute controls how the multiple
executions proceed:

- If the value is parallel, the execution may happen in parallel, or overlapping in time, but they are not required to.

- If the value is iterative, the executions of the region must happen in sequence, with one finishing before another can
begin. The first iteration begins immediately. Subsequent iterations start when the previous iteration is completed.
During each of these cases, one element of the collection is made available to the execution of the region as a token
during each execution of the region. If the collection is ordered, the elements will be presented to the region in order; if
the collection is unordered, the order of presenting elements is undefined and not necessarily repeatable. On each
execution of the region, an output value from the region is inserted into an output collection at the same position as the
input elements.

- If the value is stream, there is a single execution of the region, but its input place receives a stream of elements from the
collection. The values in the input collection are extracted and placed into the execution of the expansion region as a
stream in order, if the collection is ordered. Such a region must handle streams properly or it is ill defined. When the
execution of the entire stream is complete, any output streams are assembled into collections of the same kinds as the

inputs.

Notation

An expansion region is shown as a dashed rounded box with one of the keywords parallel, iterative, or streaming in the
upper left corner.

Input and output expansion nodes are drawn as small rectangles divided by vertical bars into small compartments. (The
symbol is meant to suggest a list of elements.) The expansion node symbols are placed on the boundary of the dashed
box. Usually arrows inside and outside the expansion region will distinguish input and output expansion nodes. If not,
then a small arrow can be used as with Pins (see Figure 12.124 on page 390).

356 UML Superstructure Specification, v2.0

Figure 12.82 - Expansion region
As a shorthand notation, the “list box pin” notation may be placed directly on an action symbol, replacing the pins of the

action (Figure 12.83). This indicates an expansion region containing a single action. The equivalent full form is shown in
Figure 12.84.

b

keyword

identifier: behaviorDescription

I3

Figure 12.83 - Shorthand notation for expansion region containing single node

Figure 12.84 - Full form of previous shorthand notation

UML Superstructure Specification, v2.0 357

Presentation Options

The notation in Figure 12.85 maps to an expansion region in parallel mode, with one behavior invoked in the region, as
shown below.

name

Figure 12.85 - Notation for expansion region with one behavior invocation

Examples

Figure 12.86 shows an expansion region with two inputs and one output that is executed in parallel. Execution of the
region does not begin until both input collections are available. Both collections must have the same number of elements.
The interior activity fragment is executed once for each position in the input collections. During each execution of the
region, a pair of values, one from each collection, is available to the region on the expansion nodes. Each execution of the
region produces a result value on the output expansion node. All of the result values are formed into a collection of the
same size as the input collections. This output collection is available outside the region on the result node after all the
parallel executions of the region have completed.

- MO------- TD----

| «parallel»
|
|
|
|
|
|
I

—_— e — — — — — — — —_ — — — = = =

Figure 12.86 - Expansion region with 2 inputs and 1 output

Figure 12.86 shows a fragment of a Fast Fourier Transform (FFT) computation containing an expansion region. Outside
the region, there are operations on arrays of complex numbers. S, Slower, Supper, and V are arrays. Cut and shuffle are
operations on arrays. Inside the region, two arithmetic operations are performed on elements of the 3 input arrays,
yielding 2 output arrays. Different positions in the arrays do not interact, therefore the region can be executed in parallel
on all positions.

358 UML Superstructure Specification, v2.0

S: Array<Complex>

V: Array<Complex>

Slower, Supper = cut(S

Slower: Array<Complex>
y P Supper: jArray<Complex>

«concurrent»

| |
|

|
|

|
|
| > :
| nxteven = lower+upper thodd = (Iower-upper)*root) |
|] |
|

|
|

|
|

|
|
| |

/

nxteven:Complex nxtodd:Complex

Sneven: Array<Complex> Snodd: Array<Complex>

H

= shuffle(Sneven,Snodd)

S’: Array<Complex>

Figure 12.87 - Expansion region

The following example shows a use of the shorthand notation for an expansion region with a single action. In this
example, the trip route outputs sets of flights and sets of hotels to book. The hotels may be booked independently and in
parallel with each other and with booking the flight.

UML Superstructure Specification, v2.0 359

Print
Itinerary

Figure 12.88 -Examples of expansion region shorthand

Specify Trip Route below can result in multiple flight segments, each of which must be booked separately. The Book
Flight action will invoke the Book Flight behavior multiple times, once for each flight segment in the set passed to
BookFlight.

Figure 12.89 - Shorthand notation for expansion region

Rationale

Expansion regions are introduced to support applying behaviors to elements of a set without constraining the order of
application.

Changes from previous UML

ExpansionRegion replaces MapAction, FilterAction, and dynamicConcurrency and dynamicMultiplicity attributes on
ActionState. Dynamic multiplicities less than unlimited are not supported in UML 1.5.

12.3.28 FinalNode (from IntermediateActivities)
A final node is an abstract control node at which a flow in an activity stops.

Generalizations

« “ControlNode (from BasicActivities)” on page 346

Description

See descriptions at children of final node.

360 UML Superstructure Specification, v2.0

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] A final node has no outgoing edges.

Semantics

All tokens offered on incoming edges are accepted. See children of final node for other semantics.

Notation

The notations for final node are illustrated below. There are two kinds of final node: activity final and
(IntermediateActivities) flow final. For more details on each of these specializations, see ActivityFinal and FlowFinal.

® ®

Activity final Flow final

Figure 12.90 - Final node notation

Examples

The figure below illustrates two kinds of final node: flow final and activity final. In this example, it is assumed that many
components can be built and installed before finally delivering the resulting application. Here, the Build Component
behavior occurs iteratively for each component. When the last component is built, the end of the building iteration is
indicated with a flow final. However, even though all component building has come to an end, other behaviors are still
executing. When the last component has been installed, the application is delivered. When Deliver Application has
completed, control is passed to an activity final node—indicating that all processing in the activity is terminated.

[no more
components

Build (Install) A to be installed] /5 . -
Component| \ Componeny Application
;[

[more components

no more to be installed]
[more components compon_ents
to be built] to be built]

Figure 12.91 - Flow final and activity final example.

UML Superstructure Specification, v2.0 361

Rationale

Final nodes are introduced to model where flows end in an activity.

Changes from previous UML

FinalNode replaces the use of FinalState in UML 1.5 activity modeling, but its concrete classes have different semantics
than FinalState.

12.3.29 FlowFinalNode (from IntermediateActivities)
A flow final node is a final node that terminates a flow.

Generalizations

« “FinalNode (from IntermediateActivities)” on page 360

Description

A flow final destroys all tokens that arrive at it. It has no effect on other flows in the activity.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

Flow final destroys tokens flowing into it.

Notation

The notation for flow final is illustrated below.

®

Figure 12.92 - Flow final notation

Examples

In the example below, it is assumed that many components can be built and installed. Here, the Build Component
behavior occurs iteratively for each component. When the last component is built, the end of the building iteration is
indicated with a flow final. However, even though all component building has come to an end, other behaviors are still
executing (such as Install Component).

362 UML Superstructure Specification, v2.0

Install

Component

; [no more

[more components ~ components
to be built] to be built]

Figure 12.93 - Flow final example without merge edge

Rationale

Flow final nodes are introduced to model termination of a flow in an activity.

Changes from previous UML

Flow final is new in UML 2.0.
12.3.30 ForkNode (from IntermediateActivities)
A fork node is a control node that splits a flow into multiple concurrent flows.

Generalizations

« “ControlNode (from BasicActivities)” on page 346

Description

A fork node has one incoming edge and multiple outgoing edges.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] A fork node has one incoming edge.

[2] The edges coming into and out of a fork node must be either all object flows or all control flows.

Semantics

Tokens arriving at a fork are duplicated across the outgoing edges. If at least one outgoing edge accepts the token,
duplicates of the token are made and one copy traverses each edge that accepts the token. The outgoing edges that did not
accept the token due to failure of their targets to accept it, keep their copy in an implicit FIFO queue until it can be
accepted by the target. The rest of the outgoing edges do not receive a token (these are the ones with failing guards). This
is an exception to the rule that control nodes cannot hold tokens if they are blocked from moving downstream (see

UML Superstructure Specification, v2.0

“Activity (from BasicActivities, CompleteActivities, Fundamental Activities, StructuredActivities)” on page 306). When
an offered token is accepted on all the outgoing edges, duplicates of the token are made and one copy traverses each edge.
No duplication is necessary if there is only one outgoing edge, but it is not a useful case.

If guards are used on edges outgoing from forks, the modelers should ensure that no downstream joins depend on the
arrival of tokens passing through the guarded edge. If that cannot be avoided, then a decision node should be introduced
to have the guard, and shunt the token to the downstream join if the guard fails. See example in Figure 12.44 on page 319.

Notation

The notation for a fork node is simply a line segment, as illustrated on the left side of the figure below. In usage, however,
the fork node must have a single activity edge entering it, and two or more edges leaving it. The functionality of join node
and fork node can be combined by using the same node symbol, as illustrated at the right side of the figure below. This
case maps to a model containing a join node with all the incoming edges shown in the diagram and one outgoing edge to
a fork node that has all the outgoing edges shown in the diagram. It assumes the UML 2.0 Diagram Interchange RFP
supports the interchange of diagram elements and their mapping to model elements.

—>
—
=
Fork node Fork node Join node and fork node used
(without flows) (with flows) together, sharing the same symbol

Figure 12.94 - Fork node notation

Examples

In the example below, the fork node passes control to both the Ship Order and Send Invoice behaviors when Fill Order is
completed.

Fill
Fill Order
Order
Send
Invoice

Figure 12.95 - Fork node example.

Rationale

Fork nodes are introduced to support parallelism in activities.

Changes from previous UML

Fork nodes replace the use of PseudoState with fork kind in UML 1.5 activity modeling. State machine forks in UML 1.5
required synchronization between parallel flows through the state machine RTC step. UML 2.0 activity forks model
unrestricted parallelism.

364 UML Superstructure Specification, v2.0

12.3.31 InitiaINode (from BasicActivities)
An initial node is a control node at which flow starts when the activity is invoked.

Generalizations

« “ControlNode (from BasicActivities)” on page 346

Description

An activity may have more than one initial node.

Attributes

No additional attributes

Associations

No additional associations

Constraints
[1] An initial node has no incoming edges.

[2] Only control edges can have initial nodes as source.

Semantics

An initial node is a starting point for executing an activity (or structured node, see “StructuredActivityNode (from
CompleteStructuredActivities, StructuredActivities)” on page 396). A control token is placed at the initial node when the
activity starts, but not in initial nodes in structured nodes contained by the activity. Tokens in an initial node are offered
to all outgoing edges. If an activity has more than one initial node, then invoking the activity starts multiple flows, one at
each initial node. For convenience, initial nodes are an exception to the rule that control nodes cannot hold tokens if they
are blocked from moving downstream, for example, by guards (see Activity). This is equivalent to interposing a
CentralBufferNode between the initial node and its outgoing edges.

Note that flows can also start at other nodes, see ActivityParameterNode and AcceptEventAction, so initial nodes are not
required for an activity to start execution. In addition, when an activity starts, control tokens are placed at actions and
structured nodes that have no incoming edges, except if they are handler bodies (see “ExceptionHandler (from
ExtraStructuredActivities)” on page 351) are fromActions of action input pins, or are contained in structured nodes.

Notation

Initial nodes are notated as a solid circle, as indicated in the figure below.

Figure 12.96 - Initial node notation

UML Superstructure Specification, v2.0 365

Examples

In the example below, the initial node passes control to the Receive Order behavior at the start of an activity.

Receive
Order

Figure 12.97 - Initial node example

Rationale

Initial nodes are introduced to model where flows start in an activity.

Changes from previous UML

InitialNode replaces the use of PseudoState with kind initial in UML 1.5 activity modeling.
12.3.32 InputPin (as specialized)

Input pins are object nodes that receive values from other actions through object flows. See Pin, Action, and ObjectNode
for more details.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] Input pins may only have outgoing edges when they are on actions that are structured nodes, and these edges must target a
node contained by the structured node.

Semantics

See “InputPin (from BasicActions)” on page 249
12.3.33 InterruptibleActivityRegion (from CompleteActivities)

An interruptible activity region is an activity group that supports termination of tokens flowing in the portions of an
activity.

Generalizations

« “ActivityGroup (from BasicActivities, Fundamental Activities)” on page 322

366 UML Superstructure Specification, v2.0

Description

An interruptible region contains activity nodes. When a token leaves an interruptible region via edges designated by the
region as interrupting edges, all tokens and behaviors in the region are terminated.

Attributes

No additional attributes

Associations

< interruptingEdge : ActivityEdge [0..*] The edges leaving the region that will abort other tokens flowing in the region.

Constraints

[1] Interrupting edges of a region must have their source node in the region and their target node outside the region in the
same activity containing the region.

Semantics

The region is interrupted, including accept event actions in the region, when a token traverses an interrupting edge. At
this point the interrupting token has left the region and is not terminated. AcceptEventActions in the region that do not
have incoming edges are enabled only when a token enters the region, even if the token is not directed at the accept event
action.

Token transfer is still atomic, even when using interrupting regions. If a non-interrupting edge is passing a token from a
source node in the region to target node outside the region, then the transfer is completed and the token arrives at the
target even if an interruption occurs during the traversal. In other words, a token transition is never partial; it is either
complete or it does not happen at all.

Do not use an interrupting region if it is not desired to abort all flows in the region in some cases. For example, if the
same execution of an activity is being used for all its invocations, then multiple streams of tokens will be flowing through
the same activity. In this case, it is probably not desired to abort all tokens just because one leaves the region. Arrange for
separate invocations of the activity to use separate executions of the activity when employing interruptible regions, so
tokens from each invocation will not affect each other.

Notation

An interruptible activity region is notated by a dashed, round-cornered rectangle drawn around the nodes contained by the
region. An interrupting edge is notation with a lightning-bolt activity edge.

Figure 12.98 - InterruptibleActivityRegion notation with interrupting edge

UML Superstructure Specification, v2.0 367

Presentation Options

An option for notating an interrupting edge is a zig zag adornment on a straight line.

|
|
|
)

Figure 12.99 - InterruptibleActivityRegion notation with interrupting edge

Examples

The first figure below illustrates that when an order cancellation request is made—only while receiving, filling, or
shipping) orders—the Cancel Order behavior is invoked.

Cancel
Order

Order
cancel
request

rejected]

Receive
Order

|
|
| [order
|
|

‘ Close
Order

[order

accepted]
~ -
Send Make Accept
Invoice Payment Payment
Invoice

Figure 12.100 - InterruptibleActivityRegion example

Rationale

Interruptible regions are introduced to support more flexible non-local termination of flow.

Changes from previous UML

Interruptible regions in activity modeling are new to UML 2.0.
12.3.34 JoinNode (from CompleteActivities, IntermediateActivities)

A join node is a control node that synchronizes multiple flows.

368 UML Superstructure Specification, v2.0

Generalizations

« “ControlNode (from BasicActivities)” on page 346

Description
A join node has multiple incoming edges and one outgoing edge.

(CompleteActivities) Join nodes have a boolean value specification using the names of the incoming edges to specify the
conditions under which the join will emit a token.

Attributes

Package CompleteActivities
e isCombineDuplicate : Boolean [1..1] Tells whether tokens having objects with the same identity are combined into one
by the join. Default value is true.

Associations

Package CompleteActivities
e joinSpec : ValueSpecification [1..1] A specification giving the conditions under which the join will emit a token.
Default is “and.”
Constraints
[1] A join node has one outgoing edge.
[2] If ajoin node has an incoming object flow, it must have an outgoing object flow, otherwise, it must have an outgoing
control flow.

Semantics

If there is a token offered on all incoming edges, then tokens are offered on the outgoing edge according to the following
join rules:

1. If all the tokens offered on the incoming edges are control tokens, then one control token is offered on the outgoing
edge.

2. If some of the tokens offered on the incoming edges are control tokens and others are data tokens, then only the data
tokens are offered on the outgoing edge. Tokens are offered on the outgoing edge in the same order they were offered
to the join.

Multiple control tokens offered on the same incoming edge are combined into one before applying the above rules. No
joining of tokens is necessary if there is only one incoming edge, but it is not a useful case.

Package CompleteActivities

The reserved string “and” used as a join specification is equivalent to a specification that requires at least one token
offered on each incoming edge. It is the default. The join specification is evaluated whenever a new token is offered on
any incoming edge. The evaluation is not interrupted by any new tokens offered during the evaluation, nor are concurrent
evaluations started when new tokens are offered during an evaluation.

UML Superstructure Specification, v2.0 369

If any tokens are offered to the outgoing edge, they must be accepted or rejected for traversal before any more tokens are
offered to the outgoing edge. If tokens are rejected for traversal, they are no longer offered to the outgoing edge. The join
specification may contain the names of the incoming edges to refer to whether a token was offered on that edge at the
time the evaluation started.

If isCombinedDuplicate is true, then before object tokens are offered to the outgoing edge, those containing objects with
the same identity are combined into one token.

Other rules for when tokens may be passed along the outgoing edge depend on the characteristics of the edge and its
target. For example, if the outgoing edge targets an object node that has reached its upper bound, no token can be passed.
The rules may be optimized to a different algorithm as long as the effect is the same. In the full object node example, the
implementation can omit the unnecessary join evaluations until the down stream object node can accept tokens.

Notation

The notation for a join node is a line segment, as illustrated on the left side of the figure below. The join node must have
one or more activity edges entering it, and only one edge leaving it. The functionality of join node and fork node can be
combined by using the same node symbol, as illustrated at the right side of the figure below. This case maps to a model
containing a join node with all the incoming edges shown in the diagram and one outgoing edge to a fork node that has
all the outgoing edges shown in the diagram. It assumes the UML 2.0 Diagram Interchange specification supports the
interchange of diagram elements and their mapping to model elements.

—
—__-
— 5
Join node Join node Join node and fork node used
(without flows) (with flows) together, sharing the same symbol

Figure 12.101 - Join node notations

Package CompleteActivities

Join specifications are shown near the join node, as shown below.

{joinSpec = ..}
Join node (with flows —]
and a join specification) : >
—_—>

Figure 12.102 - Join node notations

Examples

The example at the left of the figure indicates that a Join is used to synchronize the processing of the Ship Order and
Accept Order behaviors. Here, when both have been completed, control is passed to Close Order.

370 UML Superstructure Specification, v2.0

Ship
Order J—— = o
0se
9
Send |———=
Invoice

Figure 12.103 - Join node example

Package CompleteActivities

The example below illustrates how a join specification can be used to ensure that both a drink is selected and the correct
amount of money has been inserted before the drink is dispensed. Names of the incoming edges are used in the join
specification to refer to whether tokens are available on the edges.

{joinSpec =
Aand B
and the total coin value
inserted is >= drink price}

Select
Drink

Insert %B
Coin

Figure 12.104 - Join node example

Dispense
Drink

Rationale

Join nodes are introduced to support parallelism in activities.

Changes from previous UML

Join nodes replace the use of PseudoState with join kind in UML 1.5 activity modeling.
12.3.35 LoopNode (from CompleteStructuredActivities, StructuredActivities)
A loop node is a structured activity node that represents a loop with setup, test, and body sections.

Generalizations

» “StructuredActivityNode (from CompleteStructuredActivities, StructuredActivities)” on page 396.

UML Superstructure Specification, v2.0 371

Description

Each section is a well-nested subregion of the activity whose nodes follow any predecessors of the loop and precede any

successors of the loop. The test section may precede or follow the body section. The setup section is executed once on

entry to the loop, and the test and body sections are executed repeatedly until the test produces a false value. The results

of the final execution of the test or body are available after completion of execution of the loop.

Attributes

e isTestedFirst : Boolean [1] If true, the test is performed before the first execution of the body. If false, the body is
executed once before the test is performed.

Associations

Package StructuredActivities

e setupPart : ActivityNode[0..*] The set of nodes and edges that initialize values or perform other setup computations
for the loop.

e bodyPart : ActivityNode[0..*] The set of nodes and edges that perform the repetitive computations of the loop. The
body section is executed as long as the test section produces a true value.

e test: ActivityNode[0..*] The set of nodes, edges, and designated value that compute a Boolean value to determine
if another execution of the body will be performed.

e decider : OutputPin [1] An output pin within the test fragment the value of which is examined after execution of
the test to determine whether to execute the loop body.

Package CompleteStructuredActivities
e result: OutputPin [0..*] A list of output pins that constitute the data flow output of the entire loop.

e loopVariable : OutputPin [0..*] A list of output pins owned by the loop that hold the values of the loop variables
during an execution of the loop. When the test fails, the values are copied to the result
pins of the loop.

¢ bodyOutput : OutputPin [0..*] A list of output pins within the body fragment the values of which are copied to the
loop variable pins after completion of execution of the body, before the next iteration
of the loop begins or before the loop exits.

e loopVariablelnput : InputPin[0..*] A list of values that are copied into the loop variable pins before the first iteration of
the loop.

Constraints

No additional constraints

Semantics

No part of a loop node is executed until all control-flow or data-flow predecessors of the loop node have completed
execution. When all such predecessors have completed execution and made tokens available to inputs of the loop node,
the loop node captures the input tokens and begins execution.

372 UML Superstructure Specification, v2.0

First the setup section of the loop node is executed. A front end node is a node within a nested section (such as the setup
section, test section, or body section) that has no predecessor dependencies within the same section. A control token is
offered to each front end node within the setup section. Nodes in the setup section may also have individual dependencies
(typically data flow dependencies) on nodes external to the loop node. To begin execution, such nodes must receive their
individual tokens in addition to the control token from the overall loop.

A back end node is a node within a nested section that has no successor dependencies within the same section. When all
the back end nodes have completed execution, the overall section is considered to have completed execution. (It may be
thought of as delivering a control token to the next section within the loop.)

When the setup section has completed execution, the iterative execution of the loop begins. The test section may precede
or follow the body section (test-first loop or test-last loop). The following description assumes that the test section comes
first. If the body section comes first, it is always executed at least once, after which this description applies to subsequent
iterations.

When the setup section has completed execution (if the test comes first) or when the body section has completed
execution of an iteration, the test section is executed. A control token is offered to each front end node within the test
section. When all back end nodes in the test section have completed execution, execution of the test section is complete.
Typically there will only be one back end node and it will have a Boolean value, but for generality it is permitted to
perform arbitrary computation in the test section.

When the test section has completed execution, the Boolean value on the designated decider pin within the test section is
examined. If the value is true, the body section is executed again. If the value is false, execution of the loop node is
complete.

When the setup section has completed execution (if the body comes first) or when the iteration section has completed

execution and produced a true value, execution of the body section begins. Each front end node in the body section is

offered a control token. When all back end nodes in the body section have completed execution, execution of the body
section is complete.

Within the body section, variables defined in the loop node or in some higher-level enclosing node are updated with any
new values produced during the iteration and any temporary values are discarded.

Notation

No specific notation.

Rationale

Loop nodes are introduced to provide a structured way to represent iteration.

Changes from previous UML

Loop nodes are new in UML 2.0.
12.3.36 MergeNode (from IntermediateActivities)

A merge node is a control node that brings together multiple alternate flows. It is not used to synchronize concurrent
flows but to accept one among several alternate flows.

Generalizations

» “ControlNode (from BasicActivities)” on page 346

UML Superstructure Specification, v2.0 373

Description

A merge node has multiple incoming edges and a single outgoing edge.

Attributes

No additional attributes

Associations

No additional associations

Constraints
[1] A merge node has one outgoing edge.
[2] The edges coming into and out of a merge node must be either all object flows or all control flows.

Semantics

All tokens offered on incoming edges are offered to the outgoing edge. There is no synchronization of flows or joining of
tokens.

Notation

The notation for a merge node is a diamond-shaped symbol, as illustrated on the left side of the figure below. In usage,
however, the merge node must have two or more edges entering it and a single activity edge leaving it. The functionality
of merge node and decision node can be combined by using the same node symbol, as illustrated at the right side of the
figure below. This case maps to a model containing a merge node with all the incoming edges shown in the diagram and
one outgoing edge to a decision node that has all the outgoing edges shown in the diagram. It assumes the UML 2.0
Diagram Interchange specification supports the interchange of diagram elements and their mapping to model elements.

O e

Merge node Merge node Merge node and decision node used
(with flows) together, sharing the same symbol

Figure 12.105 - Merge node notation

374 UML Superstructure Specification, v2.0

Examples

In the example below, either one or both of the behaviors, Buy Item or Make Item could have been invoked. As each
completes, control is passed to Ship Item. That is, if only one of Buy Item or Make Item completes, then Ship Item is
invoked only once; if both complete, Ship Item is invoked twice.

Figure 12.106 - Merge node example

Rationale

Merge nodes are introduced to support bringing multiple flows together in activities. For example, if a decision is used
after a fork, the two flows coming out of the decision need to be merged into one before going to a join. Otherwise the
join will wait for both flows, only one of which will arrive.

Changes from previous UML

Merge nodes replace the use of PseudoState with junction kind in UML 1.5 activity modeling.
12.3.37 ObjectFlow (from BasicActivities, CompleteActivities)

An object flow is an activity edge that can have objects or data passing along it.

Generalizations

- “ActivityEdge (from BasicActivities, CompleteActivities, CompleteStructuredActivities, IntermediateActivities)” on
page 315.

Description
An object flow models the flow of values to or from object nodes.
Package CompleteActivities

Obiject flows add support for multicast/receive, token selection from object nodes, and transformation of tokens.

Attributes

Package CompleteActivities

e isMulticast : Boolean [1..1] = false Tells whether the objects in the flow are passed by multicasting.
e isMultireceive : Boolean [1..1] = false Tells whether the objects in the flow are gathered from respondents to
multicasting.

UML Superstructure Specification, v2.0 375

Associations

Package CompleteActivities
e selection : Behavior [0..1] Selects tokens from a source object node.

e transformation : Behavior [0..1] = Changes or replaces data tokens flowing along edge.

Constraints

Package BasicActivities
[1] Object flows may not have actions at either end.

[2] Object nodes connected by an object flow, with optionally intervening control nodes, must have compatible types. In
particular, the downstream object node type must be the same or a supertype of the upstream object node type.

[3] Object nodes connected by an object flow, with optionally intervening control nodes, must have the same upper bounds.

Package CompleteActivities

[1] An edge with constant weight may not target an object node, or lead to an object node downstream with no intervening
actions, that has an upper bound less than the weight.

[2] A transformation behavior has one input parameter and one output parameter. The input parameter must be the same or a
supertype of the type of object token coming from the source end. The output parameter must be the same or a subtype of
the type of object token expected downstream. The behavior cannot have side effects.

[3] An object flow may have a selection behavior only if it has an object node as a source.

[4] A selection behavior has one input parameter and one output parameter. The input parameter must be a bag of elements of
the same or a supertype of the type of source object node. The output parameter must be the same or a subtype of the type
of source object node. The behavior cannot have side effects.

[5] isMulticast and isMultireceive cannot both be true.

Semantics
Package BasicActivities

See semantics inherited from ActivityEdge. An object flow is an activity edge that only passes object and data tokens.
Tokens offered by the source node are all offered to the target node, subject to the restrictions inherited from
ActivityEdge.

Two object flows may have the same object node as source. In this case the edges will compete for objects. Once an edge
takes an object from an object node, the other edges do not have access to it. Use a fork to duplicate tokens for multiple
uses.

Package CompleteActivities

If a transformation behavior is specified, then each token offered to the edge is passed to the behavior, and the output of
the behavior is given to the target node for consideration instead of the token that was input to the transformation
behavior. Because the behavior is used while offering tokens to the target node, it may be run many times on the same
token before the token is accepted by the target node. This means the behavior cannot have side effects. It may not modify
objects, but it may for example, navigate from one object to another, get an attribute value from an object, or replace a
data value with another. Transformation behaviors with an output parameter with multiplicity greater than 1 may replace
one token with many.

376 UML Superstructure Specification, v2.0

If a selection behavior is specified, then it is used to offer a token from the source object node to the edge, rather than
using object node’s ordering. It has the same semantics as selection behavior on object nodes. See ObjectNode. See
application at DataStoreNode.

Multicasting and receiving is used in conjunction with partitions to model flows between behaviors that are the
responsibility of objects determined by a publish and subscribe facility. To support execution the model must be refined
to specify the particular publish/subscribe facility employed. This is illustrated in the Figure 12.113 on page 379.

Notation

An object flow is notated by an arrowed line.

—
Object flow Two object flow edges linking
(without activity nodes) object nodes and actions

An object flow edge linking
two object node pins.

Figure 12.107 - Object flow notations

Package CompleteActivities

Selection behavior is specified with the keyword «selection» placed in a note symbol, and attached to the appropriate
objectFlow symbol as illustrated in the figure below.

- «selection»
«selection» selection
selection specification
specification

_%

Figure 12.108 - Specifying selection behavior on an Object flow

UML Superstructure Specification, v2.0 377

Presentation Options

To reduce clutter in complex diagrams, object nodes may be elided. The names of the invoked behaviors can suggest their
parameters. Tools may support hyperlinking from the edge lines to show the data flowing along them, and show a small
square above the line to indicate that pins are elided, as illustrated in the figure below. Any adornments that would
normally be near the pin, like effect, can be displayed at the ends of the flow lines.

With explicit pins With pins elided

Figure 12.109 - Eliding objects flowing on the edge

Examples

In the example on the left below, the two arrowed lines are both object flow edges. This indicates that order objects flow
from Fill Order to Ship Order. In the example on the right, the one arrowed line starts from the Fill Order object node pin
and ends at Ship Order object node pin. This also indicates that order objects flow from Fill Order to Ship Order.

- Order Order
i Ship Fill [
) Ship

Figure 12.110 - Object flow example
On the left, the example below shows the Pick Materials activity provides an order along with its associated materials for
assembly. On the right, the object flow has been simplified through eliding the object flow details.

Order

5k Order Order 5

ic ic

Materials _ Asg%r;?le Materials Asose(;nble

for Order | | for Order rder
Materials Materials

With explicit pins
Figure 12.111 - Eliding objects flowing on the edge

378

With elided pins

UML Superstructure Specification, v2.0

Package CompleteActivities

In the figure below, two examples of selection behavior are illustrated. The example on the left indicates that the orders
are to be shipped based on order priority—and those with the same priority should be filled on a first-in/first-out (FIFO)
basis. The example on the right indicates that the result of a Close Order activity produces closed order objects, but the
Send Customer Notice activity requires a customer object. The selection, then, specifies that a query operation that takes

an Order evaluates the customer object via the Order.customer:Party association.

«selection» i
FIFO within «transformation»
Order Priority Order.customer

Order . Order Order

[Filled] . [Filled Closed] . Customer s
: = Ship Close ; en
Order Order Customer
Notice

Figure 12.112 - Specifying selection behavior on an Object flow

In the example below, the Requests for Quote (RFQs) are sent to multiple specific sellers (i.e., is multicast) for a quote
response by each of the sellers. Some number of sellers then respond by returning their quote response. Since multiple

responses can be received, the edge is labeled for the multiple-receipt option. Publish/subscribe and other brokered

mechanisms can be handled using the multicast and multireceive mechanisms. Note that the swimlanes are an important

feature for indicating the subject and source of this.

Buyer Seller

«multicast»

Request RFQs

for Quote

Award = Quote «multireceive»
Quote Responses

Figure 12.113 - Specifying multicast and multireceive on the edge

Rationale

Obiject flow is introduced to model the flow of data and objects in an activity.

Changes from previous UML

Explicitly modeled object flows are new in UML 2.0. They replace the use of (state) Transition in UML 1.5 activity

modeling. They also replace data flow dependencies from UML 1.5 action model.

UML Superstructure Specification, v2.0

379

12.3.38 ObjectNode (from BasicActivities, CompleteActivities)
An object node is an abstract activity node that is part of defining object flow in an activity.

Generalizations

- “ActivityNode (from BasicActivities, CompleteActivities, Fundamental Activities, IntermediateActivities,
StructuredActivities)” on page 323

« “TypedElement (from Kernel)” on page 131

Description

An object node is an activity node that indicates an instance of a particular classifier, possibly in a particular state, may
be available at a particular point in the activity. Object nodes can be used in a variety of ways, depending on where
objects are flowing from and to, as described in the semantics section.

Package CompleteActivities

Complete object nodes add support for token selection, limitation on the number of tokens, specifying the state required
for tokens, and carrying control values.

Attributes

Package CompleteActivities

e ordering : ObjectNodeOrderingKind [1..1] = FIFO Tells whether and how the tokens in the object node are ordered for
selection to traverse edges outgoing from the object node.

e isControlType : Boolean [1..1] = false Tells whether the type of the object node is to be treated as control.

Associations

Package CompleteActivities

e inState : State [0..*] The required states of the object available at this point in the activity.
e selection : Behavior [0..1] Selects tokens for outgoing edges.

e upperBound : ValueSpecification [1..1] =* The maximum number of tokens allowed in the node. Objects cannot flow
into the node if the upper bound is reached.

Constraints
Package BasicActivities

[1] All edges coming into or going out of object nodes must be object flow edges.

[2] Object nodes are not unique typed elements.
isUnique = false

Package CompleteActivities

[1] The upper bound must be equal to the upper bound of nearest upstream and downstream object nodes that do not have
intervening action nodes.

[2] If an object node has a selection behavior, then the ordering of the object node is ordered and vice versa.

380 UML Superstructure Specification, v2.0

[3] A selection behavior has one input parameter and one output parameter. The input parameter must be a bag of elements of
the same type as the object node or a supertype of the type of object node. The output parameter must be the same or a
subtype of the type of object node. The behavior cannot have side effects.

Semantics

Object nodes may only contain values at runtime that conform to the type of the object node, in the state or states
specified, if any. If no type is specified, then the values may be of any type. Multiple tokens containing the same value
may reside in the object node at the same time. This includes data values. A token in an object node can traverse only one
of the outgoing edges.

An object node may indicate that its type is to be treated as a control value, even if no type is specified for the node.
Control edges may be used with the object node having control type.

Package CompleteActivities

An object node may not contain more tokens than its upper bound. The upper bound must be a LiteralUnlimitedNatural.
An upper bound of * means the upper bound is unlimited. See ObjectFlow for additional rules regarding when objects
may traverse the edges incoming and outgoing from an object node.

The ordering of an object node specifies the order in which tokens in the node are offered to the outgoing edges. This can
be set to require that tokens do not overtake each other as they pass through the node (FIFO), or that they do (LIFO or
modeler-defined ordering). Modeler-defined ordering is indicated by an ordering value of ordered, and a selection
behavior that determines what token to offer to the edges. The selection behavior takes all the tokens in the object node
as input and chooses a single token from those. It is executed whenever a token is to be offered to an edge. Because the
behavior is used while offering tokens to outgoing edges, it may be run many times on the same token before the token is
accepted by those edges. This means the behavior cannot have side effects. The selection behavior of an object node is
overridden by any selection behaviors on its outgoing edges. See ObjectFlow. Overtaking due to ordering is distinguished
from the case where each invocation of the activity is handled by a separate execution of the activity. In this case, the
tokens have no interaction with each other, because they flow through separate executions of the activity. See Activity.

Notation

Object nodes are notated as rectangles. A name labeling the node is placed inside the symbol, where the name indicates
the type of the object node, or the name and type of the node in the format “name:type.” Object nodes whose instances
are sets of the “name” type are labeled as such. Object nodes with a signal as type are shown with the symbol on the right.

name Set of name m

Object node Object node Object node
for tokens for tokens with
containing sets signal as type

Figure 12.114 - Object node notations

UML Superstructure Specification, v2.0 381

Package CompleteActivities

A name labeling the node indicates the type of the object node. The name can also be qualified by a state or states, which
is to be written within brackets below the name of the type. Upper bounds, ordering, and control type other than the
defaults are notated in braces underneath the object node.

name name name
[state, state...]
Object node for {upperBound = 2} {ordering = LIFO}
tokens containing Object node Object node
objects in specific with a limited with ordering
states upper bound other than FIFO

Figure 12.115 - Object node notations

Selection behavior is specified with the keyword «selection» placed in a note symbol, and attached to an ObjectNode
symbol as illustrated in the figure below.

«selection»
selection
specification

name

Figure 12.116 - Specifying selection behavior on an Object node

Presentation Options

It is expected that the UML 2.0 Diagram Interchange specification will define a metaassociation between model elements
and view elements, like diagrams. It can be used to link an object node to an object diagram showing the classifier that is
the type of the object and its relations to other elements. Tools can use this information in various ways to integrate the
activity and class diagrams, such as a hyperlink from the object node to the diagram, or insertion of the class diagram in
the activity diagram as desired. See example in Figure 12.127.

Examples

See examples at ObjectFlow and children of ObjectNode.

Rationale

Object nodes are introduced to model the flow of objects in an activity.

Changes from previous UML

ObjectNode replaces and extends ObjectFlowState in UML 1.5. In particular, it and its children support collection of
tokens at runtime, single sending and receipt, and the new “pin” style of activity model.

382 UML Superstructure Specification, v2.0

12.3.39 ObjectNodeOrderingKind (from CompleteActivities)

Generalizations

None

Description

ObjectNodeOrderingKind is an enumeration indicating queuing order within a node.

Enumeration Values

e unordered

e ordered
« LIFO
« FIFO

12.3.40 OutputPin

Output pins are object nodes that deliver values to other actions through object flows. See Pin, Action, and ObjectNode
for more details.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] Output pins may only have incoming edges when they are on actions that are structured nodes, and these edges may not
target a node contained by the structured node.

Semantics

See “OutputPin (from BasicActions)” on page 256.
12.3.41 Parameter (from CompleteActivities)

Parameter is specialized when used with complete activities.

Generalizations

» “Parameter (from Kernel, AssociationClasses)” on page 115

Description

Parameters are extended in complete activities to add support for streaming, exceptions, and parameter sets.

UML Superstructure Specification, v2.0 383

Attributes

« effect : ParameterEffectKind [0..*] Specifies the effect that the owner of the parameter has on values passed in or
out of the parameter.

e isException : Boolean [1..1] =false Tells whether an output parameter may emit a value to the exclusion of the other

outputs.

e isStream : Boolean [1..1] = false Tells whether an input parameter may accept values while its behavior is
executing, or whether an output parameter post values while the behavior is
executing.

e parameterSet : ParameterSet [0..*] The parameter sets containing the parameter. See ParameterSet.

Associations

No additional associations

Constraints

[1] A parameter cannot be a stream and exception at the same time.

[2] An input parameter cannot be an exception.

[3] Reentrant behaviors cannot have stream parameters.

[4] Only in and inout parameters may have a delete effect. Only out, inout, and return parameters may have a create effect.

Semantics

isException applies to output parameters. An output posted to an exception excludes outputs from being posted to other
data and control outputs of the behavior. A token arriving at an exception output parameter of an activity aborts all flows
in the activity. Any objects previously posted to non-stream outputs never leave the activity. Streaming outputs posted
before any exception are not affected. Use exception parameters on activities only if it is desired to abort all flows in the
activity. For example, if the same execution of an activity is being used for all its invocations, then multiple streams of
tokens will be flowing through the same activity. In this case, it is probably not desired to abort all tokens just because
one reaches an exception. Arrange for separate executions of the activity to use separate executions of the activity when
employing exceptions, so tokens from separate executions will not affect each other.

Streaming parameters give an action access to tokens passed from its invoker while the action is executing. Values for
streaming parameters may arrive anytime during the execution of the action, not just at the beginning. Multiple value may
arrive on a streaming parameter during a single action execution and be consumed by the action. In effect, streaming
parameters give an action access to token flows outside of the action while it is executing. In addition to the execution
rules given at Action, these rules also apply to invoking a behavior with streaming parameters:

- All required non-stream inputs must arrive for the behavior to be invoked. If there are only required stream inputs, then
at least one must arrive for the behavior to be invoked.

« All required inputs must arrive for the behavior to finish.

« Either all required non-exception outputs must be posted by the time the activity is finished, or one of the exception
outputs must be. An activity finishes when all its tokens are in its output parameter nodes. If some output parameter
nodes are empty at that time, they are assigned the null token (see “Activity (from BasicActivities, CompleteActivities,
Fundamental Activities, StructuredActivities)” on page 306), and the activity terminates.

384 UML Superstructure Specification, v2.0

The execution rules above provide for the arrival of inputs after a behavior is started and the posting of outputs before a
behavior is finished. These are stream inputs and outputs. Multiple stream input and output tokens may be consumed and
posted while a behavior is running. Since an activity is a kind of behavior, the above rules apply to invoking an activity,
even if the invocation is not from another activity. A reentrant behavior cannot have streaming parameters because there
are potentially multiple executions of the behavior going at the same time, and it is ambiguous which execution should
receive streaming tokens.

The effect of a parameter is a declaration of the modeler’s intent, and does not have execution semantics. The modeler
must ensure that the owner of the parameter has the stated effect.

See semantics of Action and ActivityParameterNode. Also, see “MultiplicityElement (from Kernel)” on page 90, which
inherits to Parameter. It defines a lower and upper bound on the values passed to parameter at runtime. A lower bound of
zero means the parameter is optional. Actions using the parameter may execute without having a value for optional
parameters. A lower bound greater than zero means values for the parameter are required to arrive sometime during the
execution of the action.

Notation

See notation at Pin and ActivityParameterNode. The notation in class diagrams for exceptions and streaming parameters
on operations has the keywords “exception” or “stream” in the property string. See notation for Operation.

Examples

See examples at Pin and ActivityParameterNode.

Rationale

Parameter (in Activities) is extended to support invocation of behaviors by activities.

Changes from previous UML

Parameter (in Activities) is new in UML 2.0.
12.3.42 ParameterEffectKind (from CompleteActivities)

Generalizations

None

Description

The datatype ParameterEffectKind is an enumeration that indicates the effect of a behavior on values passed in or out of
its parameters (see “Parameter (from CompleteActivities)” on page 383).

Enumeration Values

» create
« read

 update
o delete

UML Superstructure Specification, v2.0 385

12.3.43 ParameterSet (from CompleteActivities)
A parameter set is an element that provides alternative sets of inputs and outputs that a behavior may use.

Generalizations

« “NamedElement (from Kernel, Dependencies)” on page 93

Description

A parameter set acts as a complete set of inputs and outputs to a behavior, exclusive of other parameter sets on the
behavior.

Attributes

No additional attributes

Associations (CompleteActivities)

e condition : Constraint [0..*] Constraint that should be satisfied for the owner of the parameters in an input parameter
set to start execution using the values provided for those parameters, or the owner of the
parameters in an output parameter set to end execution providing the values for those
parameters, if all preconditions and conditions on input parameter sets were satisfied.

e parameter : Parameter [1..*] Parameters in the parameter set.

Constraints

[1] The parameters in a parameter set must all be inputs or all be outputs of the same parameterized entity, and the parameter
set is owned by that entity.

[2] If a behavior has input parameters that are in a parameter set, then any inputs that are not in a parameter set must be
streaming. Same for output parameters.

[3] Two parameter sets cannot have exactly the same set of parameters.

Semantics

A behavior with input parameter sets can only accept inputs from parameters in one of the sets per execution. A behavior
with output parameter sets can only post outputs to the parameters in one of the sets per execution. The same is true for
operations with parameter sets. The semantics described at Action and ActivityParameter apply to each set separately. The
semantics of conditions of input and output parameter sets is the same as Behavior preconditions and postconditions,
respectively, but apply only to the set of parameters specified.

Notation

Multiple object flows entering or leaving a behavior invocation are typically treated as “and” conditions. However,
sometimes one group of flows are permitted to the exclusion of another. This is modeled as parameter set and notated
with rectangles surrounding one or more pins. The notation in the figure below expresses a disjunctive normal form where
one group of “and” flows are separated by “or” groupings. For input, when one group or another has a complete set of
input flows, the activity may begin. For output, based on the internal processing of the behavior, one group or other of
output flows may occur.

386 UML Superstructure Specification, v2.0

.)

Figure 12.117 - Alternative input/outputs using parameter sets notation

Examples

In the figure below, the Ship Item activity begins whenever it receives a bought item or a made item.

Using parameter sets to express ““or” invocation

Figure 12.118 - Example of alternative input/outputs using parameter sets

Rationale

Parameter sets provide a way for behaviors to direct token flow in the activity that invokes those behaviors.

Changes from previous UML

ParameterSet is new in UML 2.0.
12.3.44 Pin (from BasicActivities, CompleteActivities)

Generalizations
» “ObjectNode (from BasicActivities, CompleteActivities)” on page 380

« “Pin (from BasicActions)” on page 256 (merge increment)

Description

A pin is an object node for inputs and outputs to actions.

UML Superstructure Specification, v2.0 387

Attributes

Package CompleteActivities

e isControl : Boolean [1..1] = false

Associations

No additional associations

Constraints

See constraints on ObjectFlow.

Constraints

Package CompleteActivities

[1] Control pins have a control type.
isControl implies isControlType

Semantics

Tells whether the pins provide data to the actions, or just controls when it executes it.

See “Pin (from BasicActions)” on page 256.

(CompleteActivities) Control pins always have a control type, so they can be used with control edges. Control pins are
ignored in the constraints that actions place on pins, including matching to behavior parameters for actions that invoke
behaviors. Tokens arriving at control input pins have the same semantics as control arriving at an action, except that
control tokens can queue up in control pins. Tokens are placed on control output pins according to the same semantics as

tokens placed on control edges coming out of actions.

Notation

Pin rectangles may be notated as small rectangles that are attached to action rectangles. See figure below and examples.
The name of the pin can be displayed near the pin. The name is not restricted, but it often just shows the type of object or
data that flows through the pin. It can also be a full specification of the corresponding behavior parameter for invocation
actions, using the same notation as parameters for behavioral features on classes. The pins may be elided in the notation
even though they are present in the model. Pins that do not correspond to parameters can be labeled as “name:type.”

name

Input pin

Figure 12.119 - Pin notations

388

Output pin

name

UML Superstructure Specification, v2.0

The situation in which the output pin of one action is connected to the input pin of the same name in another action may
be shown by the optional notations of Figure 12.120. The standalone pin in the notation maps to an output pin and an
input pin in the underlying model. This form should be avoided if the pins are not of the same type. These variations in
notation assume the UML 2.0 Diagram Interchange specification supports the interchange of diagram elements and their
mapping to model elements, so that the chosen variation is preserved on interchange.

name |—-=|

()

Figure 12.120 - Standalone pin notations

See ObjectNode for other notations applying to pins, with examples for pins below.
Package CompleteActivities

To show streaming, a text annotation is placed near the pin symbol: {stream} or {nonstream}. See figure below. The
notation is the same for a standalone object node. Nonstream is the default where the notation is omitted.

name name
{streamx / {stream} [state] [state]
name
{stream} {stream}
Standalone object node, Input pin, Output pin,
streaming on both end streaming streaming

Figure 12.121 - Stream pin notations

UML Superstructure Specification, v2.0 389

Pins for exception parameters are indicated with a small triangle annotating the source end of the edge that comes out of
the exception pin. The notation is the same even if the notation uses a standalone notation. See figure below.

Output pin, pin style, exception

Input and output pin, standalone style, exception

Figure 12.122 - Exception pin notations

Specifying the effect that the behavior of actions has on the objects passed in and out of their parameters can be
represented by placing the effect in braces near the edge leading to or from the pin for the parameter.

{output {input {output {input
effect} effect} effect} effect}

Figure 12.123 - Specifying effect that actions have on objects

Control pins are shown with a text annotation placed near the pin symbol {control}.

See ObjectNode for other notations applying to pins, with examples for pins below.

Presentation Options

When edges are not present to distinguish input and output pins, an optional arrow may be placed inside the pin rectangle,
as shown below. Input pins have the arrow pointing toward the action and output pins have the arrow pointing away from
the action.

. .

Input pin, _ Output_pin,
pin-style, with arrow pin-style, with arrow

Figure 12.124 - Pin notations, with arrows

390 UML Superstructure Specification, v2.0

Package CompleteActivities

Additional emphasis may be added to streaming parameters by using a graphical notation instead of the textual
adornment. Object nodes can be connected with solid arrows containing filled arrowheads to indicate streaming. Pins can
be shown as filled rectangles. When combined with the option above, the arrows are shown as normal arrowheads.

name name
\ / [state] [state]
name
Input and output pin, Input pin, Output pin,
stand-alone style, streaming on both ends pin-style, streaming pin-style, streaming

Figure 12.125 - Stream pin notations, with filled arrows and rectangles

Examples

In the example below, the pin named “Order” represents Order objects. In this example at the upper left, the Fill Order

behavior produces filled orders and Ship Order consumes them and an invocation of Fill Order must complete for Ship

Order to begin. The pin symbols have been elided from the action symbols; both pins are represented by the single box
on the arrow. The example on the upper right shows the same thing with explicit pin symbols on actions. The example at
the bottom of the figure illustrates the use of multiple pins.

Fill Ship Order Order
Fill Ship
Order

Order

Order

Produce
Designs

Materials
[picked]

Pick
Materials
for Order

Figure 12.126 - Pin examples

UML Superstructure Specification, v2.0 391

In the figure below, the object node rectangle Order is linked to a class diagram that further defines the node. The class
diagram shows that filling an order requires order, line item, and the customer’s trim-and-finish requirements. An Order
token is the object flowing between the Accept and Fill activities, but linked to other objects. The activity without the
class diagram provides a simplified view of the process. The link to an associated class diagram is used to show more

detail.
Accept Fill

Object node
rectangle linked
with a class diagram

Order
Line Trim &
Item Finish

Figure 12.127 - Linking a class diagram to an object node

Package CompleteActivities

In the example below Order Filling is a continuous behavior that periodically emits (streams out) filled-order objects,
without necessarily concluding as an activity. The Order Shipping behavior is also a continuous behavior that periodically
receives filled-order objects as they are produced. Order Shipping is invoked when the first order arrives and does not
terminate, processing orders as they arrive.

Order
Filling

{stream}

Order

[Filled] {stream}

Figure 12.128 - Pin examples

Example of exception notation is shown at the top of the figure below. Accept Payment normally completes with a
payment as being accepted and the account is then credited. However, when something goes wrong in the acceptance
process, an exception can be raised that the payment is not valid, and the payment is rejected.

392 UML Superstructure Specification, v2.0

Send
Rejection

Rejected
Payment

Accepted
Payment

Credit
Account

Figure 12.129 - Exception pin examples

The figure below shows two examples of selection behavior. Both examples indicate that orders are to be shipped based
or order priority—and those with the same priority should be filled on a first-in/first-out (FIFO) basis.

Order Fill Ship
Ord
Fill
Order - Order

[Filled]

<selection» t.
FIFO within *| «selection»
Order Priority FIFO within

Order Priority

Figure 12.130 - Specifying selection behavior on an ObjectFlow

In the figure below, an example depicts a Place Order activity that creates orders and Fill Order activity that reads these
placed orders for the purpose of filling them.

Order Order

{create} {read}

Figure 12.131 Pin example with effects

Rationale

Pin is specialized in Activities to make it an object node and to give it a notation.

Changes from previous UML

Pin is new to activity modeling in UML 2.0. It replaces pins from UML 1.5 action model.
12.3.45 SendObjectAction (as specialized)

See “SendObjectAction (from IntermediateActions)” on page 272.

UML Superstructure Specification, v2.0 393

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

See “SendObjectAction (from IntermediateActions)” on page 272.

Notation

No specific notation

Presentation Options

See “SendObjectAction (from IntermediateActions)” on page 272.

Changes from previous UML

See “SendObjectAction (from IntermediateActions)” on page 272.
12.3.46 SendSignalAction (as specialized)
See “SendSignalAction (from BasicActions)” on page 273.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

See “SendSignalAction (from BasicActions)” on page 273.

Notation

See “SendSignalAction (from BasicActions)” on page 273.

394 UML Superstructure Specification, v2.0

Examples

Figure 12.132 shows part of an order-processing workflow in which two signals are sent. An order is created (in response
to some previous request that is not shown in the example). A signal is sent to the warehouse to fill and ship the order.
Then an invoice is created and sent to the customer.

Create)
Fill order request

Figure 12.132 - Signal node notations

———=| Notify customer

Create
invoice

Rationale

See “SendSignalAction (from BasicActions)” on page 273.

Changes from previous UML

See “SendSignalAction (from BasicActions)” on page 273.
12.3.47 SequenceNode (from StructuredActivities)

Generalizations

» “StructuredActivityNode (from CompleteStructuredActivities, StructuredActivities)” on page 396

Description

(StructuredActivities) A sequence node is a structured activity node that executes its actions in order.

Attributes

No additional attributes

Associations

< executableNode : ExecutableNode [*] An ordered set of executable nodes.

Constraints

No additional constraints

Semantics

When the sequence node is enabled, its executable nodes are executed in the order specified. When combined with flows,
actions must also satisfy their control and data flow inputs before starting execution.

Notation

No specific notation

UML Superstructure Specification, v2.0 395

Rationale

SequenceNode is introduced to provide a way for structured activities to model a sequence of actions.

Changes from previous UML

SequenceNode is new to UML 2.
12.3.48 StructuredActivityNode (from CompleteStructuredActivities, StructuredActivities)

(StructuredActivities) A structured activity node is an executable activity node that may have an expansion into
subordinate nodes as an ActivityGroup. The subordinate nodes must belong to only one structured activity node, although
they may be nested.

Generalizations
« “Action (from CompleteActivities, FundamentalActivities, StructuredActivities)” on page 301
« “ActivityGroup (from BasicActivities, Fundamental Activities)” on page 322
» “ExecutableNode (from ExtraStructuredActivities, StructuredActivities)” on page 354

« “Namespace (from Kernel)” on page 95

Description

A structured activity node represents a structured portion of the activity that is not shared with any other structured node,
except for nesting. It may have control edges connected to it, and pins in CompleteStructuredActivities. The execution of
any embedded actions may not begin until the structured activity node has received its object and control tokens. The
availability of output tokens from the structured activity node does not occur until all embedded actions have completed
execution (see exception at AcceptEventAction (from CompleteActions)).

Package CompleteStructuredActivities

Because of the concurrent nature of the execution of actions within and across activities, it can be difficult to guarantee
the consistent access and modification of object memory. In order to avoid race conditions or other concurrency-related
problems, it is sometimes necessary to isolate the effects of a group of actions from the effects of actions outside the
group. This may be indicated by setting the mustlsolate attribute to true on a structured activity node. If a structured
activity node is “isolated,” then any object used by an action within the node cannot be accessed by any action outside the
node until the structured activity node as a whole completes. Any concurrent actions that would result in accessing such
objects are required to have their execution deferred until the completion of the node.

Note — Any required isolation may be achieved using a locking mechanism, or it may simply sequentialize execution to avoid
concurrency conflicts. Isolation is different from the property of “atomicity,” which is the guarantee that a group of actions
either all complete successfully or have no effect at all. Atomicity generally requires a rollback mechanism to prevent
committing partial results.

Attributes

¢ mustlsolate : Boolean If true, then the actions in the node execute in isolation from actions outside the node.

396 UML Superstructure Specification, v2.0

Associations

e variable: Variable [0..*] A variable defined in the scope of the structured activity node. It has no value and may not be
accessed outside the node.

Package StructuredActivities

e containedNode : ActivityNode [0..*] Nodes immediately contained in the group. (Redefines
ActivityGroup::containedNode.)

Constraints

Package CompleteStructuredActivities

[1] The edges owned by a structured node must have source and target nodes in the structured node, and vice versa.

Semantics

Nodes and edges contained by a structured node cannot be contained by any other structured node. This constraint is
modeled as a specialized multiplicity from ActivityNode and ActivityEdge to StructuredActivityNode. Edges not
contained by a structured node can have sources or targets in the structured node, but not both. See children of
StructuredActivityNode.

No subnode in the structured node, including initial nodes and accept event actions, may begin execution until the
structured node itself has started. Subnodes begin executing according to the same rules as the subnodes of an activity
(see “InitialNode (from BasicActivities)” on page 365 and “AcceptEventAction (from CompleteActions)” on page 228).
A control flow from a structured activity node implies that a token is produced on the flow only after no tokens are left
in the node or its contained nodes recursively. Tokens reaching an activity final node in a structured node abort all flows
in the immediately containing structured node only. The other aspects of termination are the same as for activity finals
contained directly by activities (see “ActivityFinalNode (from BasicActivities, IntermediateActivities)” on page 320).

Package CompleteStructuredActivities

An object node attached to a structured activity node is accessible within the node. The same rules apply as for control
flow. Input pins on a structured activity node imply that actions in the node begin execution when all input pins have
received tokens. An output pin on a structured activity node will make tokens available outside the node only after no
tokens are left in the node or its contained nodes recursively.

If the mustlsolate flag is true for an activity node, then any access to an object by an action within the node must not
conflict with access to the object by an action outside the node. A conflict is defined as an attempt to write to the object
by one or both of the actions. If such a conflict potentially exists, then no such access by an action outside the node may
be interleaved with the execution of any action inside the node. This specification does not constrain the ways in which
this rule may be enforced. If it is impossible to execute a model in accordance with these rules, then it is ill formed.

Notation

A structured activity node is notated with a dashed round cornered rectangle enclosed its nodes and edges, with the
keyword «structured» at the top. Also see children of StructuredActivityNode.

Examples

See children of StructuredActivityNode.

UML Superstructure Specification, v2.0 397

Rationale

StructuredActivityNode is for applications that require well-nested nodes. It provides well-nested nodes that were
enforced by strict nesting rules in UML 1.5.

Changes from previous UML

StructuredActivityNode is new in UML 2.0.
12.3.49 UnmarshallAction (as specialized)
See “UnmarshallAction (from CompleteActions)” on page 278.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

See “UnmarshallAction (from CompleteActions)” on page 278.

Notation

No specific notation

Examples

In Figure 12.133, an order is unmarshalled into its name, shipping address, and product.

Name
Unmarshall
Product

Figure 12.133 - Example of UnmarshallAction

398 UML Superstructure Specification, v2.0

Rationale

See “UnmarshallAction (from CompleteActions)” on page 278.

Changes from previous UML

See “UnmarshallAction (from CompleteActions)” on page 278.

12.3.50 ValuePin (as specialized)

A value pin is an input pin that provides a value to an action that does not come from an incoming object flow edge.

Attributes

No additional attributes

Associations

No additional associations
Constraints
[1] Value pins have no incoming edges.

Semantics

ValuePins provide values to their actions, but only when the actions are otherwise enabled. If an action has no incoming
edges or other way to start execution, a value pin will not start the execution by itself or collect tokens waiting for
execution to start. When the action is enabled by these other means, the value specification of the value pin is evaluated
and the result provided as input to the action, which begins execution. This is an exception to the normal token flow
semantics of activities.

Notation

A value pin is notated as an input pin with the value specification written beside it.

Rationale

ValuePin is introduced to reduce the size of activity models that use constant values. See “ValueSpecificationAction (from
IntermediateActions)” on page 280.

Changes from UML 1.5

ValuePin replaces LiteralValueAction from UML 1.5.
12.3.51 ValueSpecificationAction (as specialized)
See “ValueSpecificationAction (from IntermediateActions)” on page 280.

Attributes

No additional attributes

UML Superstructure Specification, v2.0 399

Associations

No additional associations

Constraints

No additional constraints

Semantics

See “ValueSpecificationAction (from IntermediateActions)” on page 280.

Notation

The action is labeled with the value specification, as shown in Figure 12.134.

[value specification]

Figure 12.134 - ValueSpecificationAction notation

Examples

Figure 12.135 shows a value specification action used to output a constant from an activity.

-)

Integer

. J

Figure 12.135 - Example ValueSpecificationAction

Rationale

See “ValueSpecificationAction (from IntermediateActions)” on page 280.

Changes from previous UML

See “ValueSpecificationAction (from IntermediateActions)” on page 280.

400 UML Superstructure Specification, v2.0

12.3.52 Variable (from StructuredActivities)

(StructuredActivities) Variables are elements for passing data between actions indirectly. A local variable stores values
shared by the actions within a structured activity group but not accessible outside it. The output of an action may be
written to a variable and read for the input to a subsequent action, which is effectively an indirect data flow path. Because
there is no predefined relationship between actions that read and write variables, these actions must be sequenced by
control flows to prevent race conditions that may occur between actions that read or write the same variable.

Generalizations
« “MultiplicityElement (from Kernel)” on page 90

« “TypedElement (from Kernel)” on page 131

Description

A variable specifies data storage shared by the actions within a group. There are actions to write and read variables. These
actions are treated as side effecting actions, similar to the actions to write and read object attributes and associations.
There are no sequencing constraints among actions that access the same variable. Such actions must be explicitly
coordinated by control flows or other constraints.

Any values contained by a variable must conform to the type of the variable and have cardinalities allowed by the
multiplicity of the variable.

Associations

e scope : StructuredActivityNode [0..1] A structured activity node that owns the variable.
e activityScope : Activity [0..1] An activity that owns the variable.
Attributes

No additional attributes

Constraints

[1] A variable is owned by a StructuredNode or Activity, but not both.

Additional operations

[1] The isAccessibleBy() operation is not defined in standard UML. Implementations should define it to specify which
actions can access a variable.

isAccessibleBy(a: Action) : Boolean

Semantics

A variable specifies a slot able to hold a value or a sequence of values, consistent with the multiplicity of the variable.
The values held in this slot may be accessed from any action contained directly or indirectly within the group action or
activity that is the scope of the variable.

Notation

No specific notation

UML Superstructure Specification, v2.0 401

Rationale

Variables are introduced to simplify translation of common programming languages into activity models for those
applications that do not require object flow information to be readily accessible. However, source programs that set
variables only once can be easily translated to use object flows from the action that determines the values to the actions
that use them. Source programs that set variables more than once can be translated to object flows by introducing a local
object containing attributes for the variables, or one object per variable combined with data store nodes.

Changes from UML 1.5

Variable is unchanged from UML 1.5, except that it is used on StructuredActivityNode instead of GroupNode.

12.4 Diagrams

The focus of activity modeling is the sequence and conditions for coordinating lower-level behaviors, rather than which
classifiers own those behaviors. These are commonly called control flow and object flow models. The behaviors
coordinated by these models can be initiated because other behaviors finish executing, because objects and data become
available, or because events occur external to the flow. See 12.3.4, “Activity (from BasicActivities, CompleteActivities,
Fundamental Activities, StructuredActivities),” on page 306 for more introduction and semantic framework.

The notation for activities is optional. A textual notation may be used instead.

The following sections describe the graphic nodes and paths that may be shown in activity diagrams.

Graphic Nodes

The graphic nodes that can be included in activity diagrams are shown in Table 12.1.

Table 12.1 - Graphic nodes included in activity diagrams

Node Type Notation Reference

AcceptEventAction See “AcceptEventAction (as specialized)” on

X page 299.

Action See “Action (from CompleteActivities,
C) Fundamental Activities, StructuredActivities)” on
page 301.
ActivityFinal See “ActivityFinalNode (from BasicActivities,
@ IntermediateActivities)” on page 320.

ActivityNode See ExecutableNode, See “ActivityNode (from BasicActivities,
ControlNode, and ObjectNode. CompleteActivities, Fundamental Activities,
IntermediateActivities, StructuredActivities)” on
page 323.

402 UML Superstructure Specification, v2.0

Table 12.1 - Graphic nodes included in activity diagrams

Node Type

Notation

Reference

ControlNode

See DecisionNode, FinalNode,
ForkNode, InitialNode,
JoinNode, and MergeNode.

See “ControlNode (from BasicActivities)” on
page 346.

DataStore

<<datastore>>

See “DataStoreNode (from CompleteActivities)”
on page 347.

DecisionNode

See “DecisionNode (from IntermediateActivities)”
on page 349.

FinalNode See ActivityFinal and See “FinalNode (from IntermediateActivities)” on
FlowFinal. page 360.
FlowFinal See “FlowFinalNode (from
® IntermediateActivities)” on page 362.
ForkNode See “ForkNode (from IntermediateActivities)” on
>— page 363.
>
InitialNode See “InitialNode (from BasicActivities)” on
® page 365.
JoinNode = See “Join_Node (_frgr_n CompleteActivities,
- IntermediateActivities)” on page 368.
—
MergeNode See “MergeNode (from IntermediateActivities)”

on page 373.

UML Superstructure Specification, v2.0

403

Table 12.1 - Graphic nodes included in activity diagrams

Node Type

Notation Reference

ObjectNode

()
))

See “ObjectNode (from BasicActivities,
CompleteActivities)” on page 380 and its children.

SendSignal Action

See “SendSignalAction (as specialized)” on
page 394.

Graphic Paths

The graphic paths that can be included in activity diagrams are shown in Table 12.2

Table 12.2 - Graphic paths included in activity diagrams

Path Type Reference
ActivityEdge See ControlFlow and See “ActivityEdge (from BasicActivities,
ObjectFlow. CompleteActivities,

CompleteStructuredActivities,
IntermediateActivities)” on page 315.

ControlFlow See “ControlFlow (from BasicActivities)” on

ObjectFlow See “ObjectFlow (from BasicActivities,

m CompleteActivities)” on page 375 and its children.
404 UML Superstructure Specification, v2.0

Other Graphical Elements

Activity diagrams have graphical elements for containment. These are included in Table 12.3.

Table 12.3 - Graphic elements for containment in activity diagrams

Type Notation

Reference

Activity

Activity name \
Parameter name: type

() -

J

See “Activity (from
BasicActivities,
CompleteActivities,

Fundamental Activities,
StructuredActivities)” on page 306.

ActivityPartition

Partition Name

(Partition Name)
invocation

See “ActivityPartition (from
IntermediateActivities)” on
page 329.

InterruptibleActivityRegion

See “InterruptibleActivityRegion
(from CompleteActivities)” on
page 366.

ExceptionHandler

See “ExceptionHandler (from
ExtraStructuredActivities)” on
page 351.

ExpansionRegion

“ExpansionRegion (from
ExtraStructuredActivities)” on
page 355

UML Superstructure Specification, v2.0

405

Table 12.3 - Graphic elements for containment in activity diagrams

Type Notation Reference

Local pre- and postconditions. See “Action (from
«localPrecondition» |ﬁ CompleteActivities,
constraint Fundamental Activities,

StructuredActivities)” on page 301.

.
'
name
'
.

«localPostcondition»
constraint

ParameterSet See “ParameterSet (from
CompleteActivities)” on page 386.

406 UML Superstructure Specification, v2.0

13 Common Behaviors

13.1 Overview

The Common Behaviors packages specify the core concepts required for dynamic elements and provides the
infrastructure to support more detailed definitions of behavior. Figure 13.1 shows a domain model explaining the
relationship between occurrences of behaviors.

Note — The models shown in Figure 13.1 through Figure 13.4 are not metamodels but show objects in the semantic domain
and relationships between these objects. These models are used to give an informal explication of the dynamic semantics of
the classes of the UML metamodel.

BehaviorPerformance

+host +execution
Object BehaviorExecution BehaviorEmergence
1 *
1
+invoker .
+participant | 1..* *

Figure 13.1 - Common Behaviors Domain Model

Any behavior is the direct consequence of the action of at least one object. A behavior describes how the states of these
objects, as reflected by their structural features, change over time. Behaviors, as such, do not exist on their own, and they
do not communicate. If a behavior operates on data, that data is obtained from the host object.

There are two kinds of behaviors, emergent behavior and executing behavior. An executing behavior is performed by an
object (its host) and is the description of the behavior of this object. An executing behavior is directly caused by the
invocation of a behavioral feature of that object or by its creation. In either case, it is a consequence of the execution of
an action by some related object. A behavior has access to the structural features of its host object. Objects that may host
behaviors are specified by the concrete subtypes of the BehavioredClassifier metaclass.

Emergent behavior results from the interaction of one or more participant objects. If the participating objects are parts of
a larger composite object, an emerging behavior can be seen as indirectly describing the behavior of the container object
also. Nevertheless, an emergent behavior can result from the executing behaviors of the participant objects.

Occurring behaviors are specified by the concrete subtypes of the abstract Behavior metaclass. Behavior specifications
can be used to define the behavior of an object, or they can be used to describe or illustrate the behavior of an object. The
latter may only focus on a relevant subset of the behavior an object may exhibit (allowed behavior), or it may focus on
behavior an object must not exhibit (forbidden behavior).

UML Superstructure Specification, v2.0 407

Albeit behavior is ultimately related to an object, emergent behavior may also be specified for non-instantiable classifiers,
such as interfaces or collaborations. Such behaviors describe the interaction of the objects that realize the interfaces or the
parts of the collaboration (see “Collaboration (from Collaborations)” on page 164).

BasicBehaviors

The BasicBehaviors subpackage of the Common Behavior package introduces the framework that will be used to specify
behaviors. The concrete subtypes of Behavior will provide different mechanisms to specify behaviors. A variety of
specification mechanisms are supported by the UML, such as automata (“StateMachine (from BehaviorStateMachines)”
on page 545), Petri-net like graphs (“Activity (from BasicActivities, CompleteActivities, FundamentalActivities,
StructuredActivities)” on page 306), informal descriptions (“UseCase (from UseCases)” on page 578), or partially-ordered
sequences of event occurrences (“Interaction (from Basiclnteraction, Fragments)” on page 467). Profiles may introduce
additional styles of behavioral specification. The styles of behavioral specification differ in their expressive power and
domain of applicability. Further, they may specify behaviors either explicitly, by describing the observable event
occurrences resulting from the execution of the behavior, or implicitly, by describing a machine that would induce these
events. The relationship between a specified behavior and its hosting or participating instances is independent of the
specification mechanism chosen and described in the common behavior package. The choice of specification mechanism
is one of convenience and purpose; typically, the same kind of behavior could be described by any of the different
mechanisms. Note that not all behaviors can be described by each of the different specification mechanisms, as these do
not all have the same expressive power. However, for many behaviors, the choice of specification mechanism is one of
convenience.

As shown in the domain model of Figure 13.2, the execution of a behavior may be caused by a call behavior occurrence
(representing the direct invocation of a behavior through an action) or a trigger occurrence (representing an indirect
invocation of a behavior, such as through an operation call). A start occurrence marks the beginning of a behavior
execution, while its completion is accompanied by a termination occurrence.

Object
+host | 1
TeminationOccurrence inish *+execution |
+finis
BehaviorExecution | Teffect +CaUS€ | Eyenioccurrence
1 1 o1 .
1 1 A\
StartOccurrence +start

TriggerOccurrence CallBehaviorOccurrence

Figure 13.2 - Invocation Domain Model

Communications

The Communications subpackage of the Common Behavior package adds the infrastructure to communicate between
objects in the system and to invoke behaviors. The domain model shown in Figure 13.3 explains how communication
takes place. Note that this domain model specifies the semantics of communication between objects in a system. Not all
aspects of the domain model are explicitly represented in the specification of the system, but may be implied by the
dynamic semantics of the constructs used in a specification.

408 UML Superstructure Specification, v2.0

An action representing the invocation of a behavioral feature is executed by a sender object resulting in an invocation
event occurring. The invocation event may represent the sending of a signal or the call to an operation. As a result of the
invocation event a request is generated. A request is an object capturing the data that was passed to the action causing the
invocation event (the arguments that must match the parameters of the invoked behavioral feature); information about the
nature of the request (i.e., the behavioral feature that was invoked); the identities of the sender and receiver objects; as
well as sufficient information about the behavior execution to enable the return of a reply from the invoked behavior,
where appropriate. (In profiles, the request object may include additional information, for example, a time stamp.)

While each request is targeted at exactly one receiver object and caused by exactly one sending object, an occurrence of
an invocation event may result in a number of requests being generated (as in a signal broadcast). The receiver may be the
same object that is the sender, it may be local (i.e., an object held in a slot of the currently executing object, or the
currently executing object itself, or the object owning the currently executing object), or it may be remote. The manner of
transmitting the request object, the amount of time required to transmit it, the order in which the transmissions reach their
receiver objects, and the path for reaching the receiver objects are undefined. Once the generated request arrives at the
receiver object, a receiving event will occur.

Object
+ 1 ;
InvocationOc currence | FSendEvent +message Request message ReceiveOccurrence
1 1..% 1 +receiwe Event
* * *
+event | * *
+senger 1 1 | +receiver
Object
+ i +sender)
execution | 1 +receiver
BehaviorExecution | +execution +host
*
* 1

Figure 13.3 - Communication Domain Model

Several kinds of requests exist between instances, for example, sending a signal or invoking an operation. The kind of
request is determined by the kind of invocation occurrence that caused it, as shown in Figure 13.4. The former is used to
trigger a reaction in the receiver in an asynchronous way and without a reply, while the latter applies an operation to an
instance, which may be either synchronously or asynchronously and may require a reply from the receiver to the sender.
A send invocation occurrence creates a send request and causes a signal occurrence in the receiver. A call invocation
occurrence creates a call request and causes a call occurrence in the receiver.

UML Superstructure Specification, v2.0 409

SendInvocationOccurrence SendRequest SignalOccurrence
InvocationOccurrence | +sendEvent +message | Request | *message +receiveEvent | ReceiveOccurrence
1 1. 1 1
CalllnvocationOccurrence CallRequest CallOccurrence

Figure 13.4 - Domain Model Showing Request Kinds

An invocation event occurrence represents the recognition of an invocation request after its receipt by a target object.
Invocation event occurrences are the result of the execution of invocation actions (see “InvocationAction (from
BasicActions)” on page 249). Invocation actions include send actions and call actions. A send action is specified by a Signal
(see “Signal (from Communications)” on page 435) and argument values. The execution of a send action results in a send
request, which results in a call event occurrence when it is recognized by the target object. A call action is specified by an
Operation and argument values. The execution of a call action results in a call request, which results in a call event occurrence
when it is recognized by the target object. Signal event occurrences and call event occurrences are specified by the
corresponding metaclasses (see “SignalEvent (from Communications)” on page 435 and “CallEvent (from Communications)”
on page 421).

As shown in Figure 13.3, an object hosts a behavior execution (i.e., a behavior will be executed in the context of that object).
The execution of an invocation action by the behavior constitutes an invocation occurrence. The invocation occurrence results
in a request object that transmits the invocation request from the sender object (caller) to the receiver object (target). The
receipt of the request by the receiver is manifest as a receive occurrence. When the receive occurrence matches a trigger
defined in the class of the target object, it causes the execution of a behavior. The details of identifying the behavior to be
invoked in response to the occurrence of an event are a semantic variation point. The resulting behavior execution is hosted by
the target object. The specific mechanism by which the data passed with the request (the attributes of the request object) are
made available as arguments to the invoked behavior (e.g., whether the data or copies are passed with the request) is a
semantic variation point. If the invocation action is synchronous, the request object also includes sufficient information to
identify the execution that invoked the behavior, but this information is not available for the use of the invoked behavior (and,
therefore, is not modeled). When a synchronous execution completes, this information is used to direct a reply message to the
original behavior execution.

The detection of an (event) occurrence by an object may cause a behavioral response. For example, a state machine may
transition to a new state upon the detection of the occurrence of an event specified by a trigger owned by the state machine, or
an activity may be enabled upon the receipt of a message. When an event occurrence is recognized by an object, it may have
an immediate effect or the event may be saved in an event pool and have a later effect when it is matched by a trigger specified
for a behavior.

410 UML Superstructure Specification, v2.0

The occurrence of a change event (see “ChangeEvent (from Communications)” on page 422) is based on some expression
becoming true. A time event occurs when a predetermined deadline expires (see “TimeEvent (from Communications,
SimpleTime)” on page 438). No data is passed by the occurrence of a change event or a time event. Figure 13.12 shows the
hierarchy of events.

SimpleTime

The SimpleTime subpackage of the Common Behavior package adds metaclasses to represent time and durations, as well
as actions to observe the passing of time.

The simple model of time described here is intended as an approximation for situations where the more complex aspects
of time and time measurement can safely be ignored. For example, this model does not account for the relativistic effects
that occur in many distributed systems, or the effects resulting from imperfect clocks with finite resolution, overflows,
drift, skew, etc. It is assumed that applications for which such characteristics are relevant will use a more sophisticated
model of time provided by an appropriate profile.

13.2 Abstract syntax

Figure 13.5 shows the dependencies of the CommonBehaviors packages.

Kerel
/‘\
<<merge>>‘
Interfaces - . Interme diate Actions
BasicBehaviors
<<merge>> .
> <
<<merge>>
/ <<merge>> /
<<merge>> <<merge>>

AN /
]]

Communications SimpleTime

Figure 13.5 - Dependencies of the CommonBehaviors packages

UML Superstructure Specification, v2.0 411

BasicBehaviors

Classifier Class
(from Kernel) (from Kernel)
+ownedBehavior
; i 0.1 {subsets ownedMember -
BehavioredClassifier PR Behavior 0.1 +ownedParameter P p——
* : >
01 0.1 'S Reentrant: Boolean {ordered, ; (from Kernel)
+classifierBehavior subsets ownedMember}
{subsets ownedBehavior}
rcontext
0.1 *
- +specificaton +method
BehavioralFeature
isAbstract : Boolean | 0-1 *
*
*
+redefinedBehavior

{subsets redefinedElem...

Opaque Behavior
body: String [1..*] {ordered}
language : String [0..*]{ordered}

FunctionBehavior

Figure 13.6 - Common Behavior

+/result
- Parameter
OpaqueExpression R 0.1 (from Kemel)
+behavior
Behavior
* 0..1

Figure 13.7 - Expression

{subsets namespace, subsets context}

+precondition

Behavior @ Constraint
0.1 {subsets ownedRule} * (from Kemel)
+postcondition
L o
0..1 {subsets ownedRule} *

{subsets namespace, subsets context}

Figure 13.8 - Precondition and postcondition constraints for behavior

412 UML Superstructure Specification, v2.0

Communications

BehavioralFeature

concurrency : CallConcurrencyKind

BehavioredClassifier
(from BasicBehaviors)

1

Class

<@ isActive : Boolean

Interface

Classifier {subsets feature,

from Kemel) subsets ownedMember}
- * 0.1

Reception +ownedReception

0.1
* 0..1
Signal .
+signal * +ownedReception

0.1 +owningSignal

+owned Attribute

Property

Figure 13.9 - Reception

Classifier

{subsets feature,
subsets ownedMember}

{subsets namespace, subsets classifier, subsets featuringClassifier}

{ordered, subsets attribute, subsets ownedMember}

Behavioral Feature

(from Kernel)

+raisedException
{redefines raisedException}

Figure 13.10 - Extensions to behavioral features

UML Superstructure Specification, v2.0

concurrency : CallConcurencyKind

<<enumeration>>
CallConcurrencyKind

sequential
guarded
concurrent

413

NamedElement PackageableElement

(from Kernel) (from Kernel)
BehavioredClassifier il * Trigger +event Event
+ownedTrigger 1
{subsets owne dMe mber}
Figure 13.11 - Triggers
Event
MessageEvent TimeEwvent ChangeEvent
isRelative : Boolean
- - +when +changeExpression
AnyReceiveEvent Signal Event CallEvent {subsets ownedElement}| 1 {subsets ownedElement} |, 1
ValueSpecification ValueSpecification
* * (fromKernel) fromKemel)
+signal 1 +operation |, 1
Signal Operation

Figure 13.12 - Events

414 UML Superstructure Specification, v2.0

SimpleTime

{redefines when}

TimeEvent

ValueSpecification
(from Kernel)

+max

1

+min

Constraint
(from Kemel)

]

Interval

i

NamedElement

(fromKernel)

IntervalConstraint
1
+specification
{redefines specification}
TimeConstraint

+when 1 {redefines min}
+min
+event TimeExpression Timeintenal | 1
o1 firstTime : Boolean = True +spe
h +max {rede

0..2/]' +event

+now

{redefinesvalue}

{redefines max}

+min

{redefines min}

ification

ines specification}

Duration

firstTime : Boolean = True

m

{redefinesvalue} +duration

WriteStructuralFeatureAction
(from IntermediateActions)

TimeObservationAction

DurationObservationAction

Figure 13.13 - Sim

pleTime

13.3 Class Descriptions

ax
fredefines max}

Durationinterval | 1

+edfication
{redefines specification}

13.3.1 AnyReceiveEvent (from Communications)

Generalizations

» “MessageEvent (from Communications)” on page 431

Description

DurationConstraint

A transition trigger associated with AnyReceiveEvent specifies that the transition is to be triggered by the receipt of any
message that is not explicitly referenced in another transition from the same vertex.

Attributes

No additional attributes

Associations

No additional associations

UML Superstructure Specification, v2.0

415

Constraints
No additional constraints

Semantics

An AnyReceiveEvent associated with a transition trigger specifies that the transition is triggered for all applicable
message receive events except for those specified explicitly on other transitions having the same vertex as a source.

Notation

Any AnyReceiveEvent is denoted by the string “all” used as the trigger.

<any-receive-event> ::= ‘all’

Changes from previous UML

This construct has been added.
13.3.2 Behavior (from BasicBehaviors)

Generalizations

» “Class (from Kernel)” on page 45

Description

Behavior is a specification of how its context classifier changes state over time. This specification may be either a
definition of possible behavior execution or emergent behavior, or a selective illustration of an interesting subset of
possible executions. The latter form is typically used for capturing examples, such as a trace of a particular execution.

A classifier behavior is always a definition of behavior and not an illustration. It describes the sequence of state changes an
instance of a classifier may undergo in the course of its lifetime. Its precise semantics depends on the kind of classifier. For
example, the classifier behavior of a collaboration represents emergent behavior of all the parts, whereas the classifier
behavior of a class is just the behavior of instances of the class separated from the behaviors of any of its parts.

When a behavior is associated as the method of a behavioral feature, it defines the implementation of that feature (i.e., the
computation that generates the effects of the behavioral feature).

As a classifier, a behavior can be specialized. Instantiating a behavior is referred to as “invoking” the behavior, an
instantiated behavior is also called a behavior “execution.” A behavior may be invoked directly or its invocation may be
the result of invoking the behavioral feature that specifies this behavior. A behavior can also be instantiated as an object
in virtue of it being a class.

The specification of a behavior can take a number of forms, as described in the subclasses of Behavior. Behavior is an
abstract metaclass factoring out the commonalities of these different specification mechanisms.

When a behavior is invoked, its execution receives a set of input values that are used to affect the course of execution,
and as a result of its execution it produces a set of output values that are returned, as specified by its parameters. The
observable effects of a behavior execution may include changes of values of various objects involved in the execution, the
creation and destruction of objects, generation of communications between objects, as well as an explicit set of output
values.

416 UML Superstructure Specification, v2.0

Attributes

e isReentrant: Boolean [1] Tells whether the behavior can be invoked while it is still executing from a previous
invocation.

Associations

e specification: BehavioralFeature [0..1]
Designates a behavioral feature that the behavior implements. The behavioral feature must be owned by the classifier
that owns the behavior or be inherited by it. The parameters of the behavioral feature and the implementing behavior
must match. If a behavior does not have a specification, it is directly associated with a classifier (i.e., it is the behavior
of the classifier as a whole).

e context: BehavioredClassifier [0..1]
The classifier that is the context for the execution of the behavior. If the behavior is owned by a BehavioredClassifier, that
classifier is the context. Otherwise, the context is the first BehavioredClassifier reached by following the chain of owner
relationships. For example, following this algorithm, the owner of an entry action in a state machine is the classifier that
owns the state machine. The features of the context classifier as well as the elements visible to the context classifier are
visible to the behavior. (Specializes RedefinableElement.redefinitionContext.)

e ownedParameter: Parameter
References a list of parameters to the behavior that describes the order and type of arguments that can be given when
the behavior is invoked and of the values that will be returned when the behavior completes its execution. (Specializes
Namespace.ownedMember.)

o redefinedBehavior: Behavior
References a behavior that this behavior redefines. A subtype of Behavior may redefine any other subtype of Behavior. If
the behavior implements a behavioral feature, it replaces the redefined behavior. If the behavior is a classifier behavior, it
extends the redefined behavior.

e precondition: Constraint
An optional set of Constraints specifying what must be fulfilled when the behavior is invoked.
(Specializes Namespace.constraint and Constraint.context.)

e postcondition: Constraint
An optional set of Constraints specifying what is fulfilled after the execution of the behavior is completed, if its
precondition was fulfilled before its invocation. (Specializes Namespace.constraint and Constraint.context.)

Constraints
[1] The parameters of the behavior must match the parameters of the implemented behavioral feature.

[2] The implemented behavioral feature must be a feature (possibly inherited) of the context classifier of the behavior.

[3] If the implemented behavioral feature has been redefined in the ancestors of the owner of the behavior, then the behavior
must realize the latest redefining behavioral feature.

[4] There may be at most one behavior for a given pairing of classifier (as owner of the behavior) and behavioral feature (as
specification of the behavior).

Semantics

The detailed semantics of behavior is determined by its subtypes. The features of the context classifier and elements that
are visible to the context classifier are also visible to the behavior, provided that is allowed by the visibility rules.

UML Superstructure Specification, v2.0 417

When a behavior is invoked, its attributes and parameters (if any) are created and appropriately initialized. Upon
invocation, the arguments of the original invocation action are made available to the new behavior execution
corresponding to its parameters with direction ‘in’ and ‘inout,” if any. When a behavior completes its execution, a value
or set of values is returned corresponding to each parameter with direction ‘out,” ‘inout,” or ‘return,” if any. If such a
parameter has a default value associated and the behavior does not explicitly generate a value for this parameter, the
default value describes the value that will be returned corresponding to this parameter. If the invocation was synchronous,
any return values from the behavior execution are returned to the original caller, which is unblocked and allowed to
continue execution.

The behavior executes within its context object, independently of and concurrently with any existing behavior executions.
The object that is the context of the behavior manages the input pool holding the event occurrences to which a behavior
may respond (see 13.3.4, “BehavioredClassifier (from BasicBehaviors, Communications),” on page 419). As an object
may have a number of behaviors associated, all these behaviors may access the same input pool. The object ensures that
each event occurrence on the input pool is consumed by only one behavior.

When a behavior is instantiated as an object, it is its own context.

Semantic Variation Points

The means by which requests are transported to their target depend on the type of requesting action, the target, the
properties of the communication medium, and numerous other factors. In some cases, this is instantaneous and completely
reliable while in others it may involve transmission delays of variable duration, loss of requests, reordering, or
duplication. (See also the discussion on page 409.)

How the parameters of behavioral features or a behavior match the parameters of a behavioral feature is a semantic
variation point (see BehavioralFeature on page 418).

Notation
None

Changes from previous UML

This metaclass has been added. It abstracts the commonalities between the various ways that behavior can be
implemented in the UML. It allows the various ways of implementing behavior (as expressed by the subtypes of
Behavior) to be used interchangeably.

13.3.3 BehavioralFeature (from BasicBehaviors, Communications)

Generalizations

- “BehavioralFeature (from Kernel)” on page 44 (merge increment)

Description

A behavioral feature is implemented (realized) by a behavior. A behavioral feature specifies that a classifier will respond
to a designated request by invoking its implementing method.

418 UML Superstructure Specification, v2.0

Attributes

Package BasicBehaviors

e isAbstract: Boolean If true, then the behavioral feature does not have an implementation, and one must be
supplied by a more specific element.
If false, the behavioral feature must have an implementation in the classifier or one must be
inherited from a more general element.

Package Communications

e concurrency: CallConcurrencyKind Specifies the semantics of concurrent calls to the same passive instance (i.e., an
instance originating from a class with isActive being false). Active instances
control access to their own behavioral features.

Associations

Package BasicBehaviors

* method: Behavior A behavioral description that implements the behavioral feature. There may be at most one
behavior for a particular pairing of a classifier (as owner of the behavior) and a behavioral feature
(as specification of the behavior).

Package Communications

« raisedException: Classifier ~ The signals that the behavioral feature raises as exceptions. (Specializes
BehavioralFeature.raisedException.)

Constraints
No additional constraints

Semantics

The invocation of a method is caused by receiving a request invoking the behavioral feature specifying that behavior. The
details of invoking the behavioral feature are defined by the subclasses of BehavioralFeature.

Semantic Variation Points

How the parameters of behavioral features or a behavior match the parameters of a behavioral feature is a semantic
variation point. Different languages and methods rely on exact match (i.e., the type of the parameters must be the same),
co-variant match (the type of a parameter of the behavior may be a subtype of the type of the parameter of the behavioral
feature), contra-variant match (the type of a parameter of the behavior may be a supertype of the type of the parameter of
the behavioral feature), or a combination thereof.

Changes from previous UML

The metaattributes isLeaf and isRoot have been replaced by properties inherited from RedefinableElement.
13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)

Generalizations

« “Class (from Kernel)” on page 45

UML Superstructure Specification, v2.0 419

Description

A classifier can have behavior specifications defined in its namespace. One of these may specify the behavior of the
classifier itself.

Attributes

No additional attributes

Associations

e ownedBehavior: Behavior References behavior specifications owned by a classifier. (Specializes
Namespace.ownedMember.)

« classifierBehavior: Behavior [0..1] A behavior specification that specifies the behavior of the classifier itself.
(Specializes BehavioredClassifier.ownedBehavior.)

Package Communications

e ownedTrigger : Trigger [0..*] References Trigger descriptions owned by a Classifier (Specializes
Namespace.ownedMember.)

Constraints

If a behavior is classifier behavior, it does not have a specification.

Semantics

The behavior specifications owned by a classifier are defined in the context of the classifier. Consequently, the behavior
specifications may reference features of the classifier. Any invoked behavior may, in turn, invoke other behaviors visible
to its context classifier. When an instance of a behaviored classifier is created, its classifier behavior is invoked.

When an event occurrence is recognized by an object that is an instance of a behaviored classifier, it may have an
immediate effect or the occurrence may be saved for later triggered effect. An immediate effect is manifested by the
invocation of a behavior as determined by the event (the type of the occurrence). A triggered effect is manifested by the
storage of the occurrence in the input event pool of the object and the later consumption of the occurrence by the
execution of an ongoing behavior that reaches a point in its execution at which a trigger matches the event (type) of the
occurrence in the pool. At this point, a behavior may be invoked as determined by the event.

When an executing behavior owned by an object comes to a point where it needs a trigger to continue its execution, the
input pool is examined for an event that satisfies the outstanding trigger or triggers. If an event satisfies one of the
triggers, the event is removed from the input pool and the behavior continues its execution, as specified. Any data
associated with the event are made available to the triggered behavior.

Semantic Variation Points

It is a semantic variation whether one or more behaviors are triggered when an event satisfies multiple outstanding triggers.
If an event in the pool satisfies no triggers at a wait point, it is a semantic variation point what to do with it.

The ordering of the events in the input pool is a semantic variation.

Notation
See “Classifier (from Kernel, Dependencies, PowerTypes)” on page 48.

420 UML Superstructure Specification, v2.0

Changes from previous UML

In UML 1.4, there was no separate metaclass for classifiers with behavior.
13.3.5 CallConcurrencyKind (from Communications)

Generalizations

None

Description

CallConcurrencyKind is an enumeration with the following literals:

e sequential - No concurrency management mechanism is associated with the operation and, therefore, concurrency
conflicts may occur. Instances that invoke a behavioral feature need to coord